Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Concentraciones de hierro y manganeso en tejidos foliares de Rhizophora mangle (Rhizophoraceae): implicaciones para el metabolismo energético
PDF (English)
HTML (English)
EPUB (English)

Cómo citar

Soares Pascoalini, S., Meire de Santana Lopes, D., Ralph Falqueto, A., D’Addazio, V., Alves Fernandes, A., Barcellos da Rosa, M., Barcelos Passos Lima Gontijo, A., Luiz Gomes Soares, M., Gontijo, I., Romais Schmildt, E., Farías Espinoza, H. D. C. ., Brummelhaus de Menezes, B., Mironuk Frescura, L., Vidal dos Santos Leopoldo, R., Patricio de Oliveira, C., de Almeida Leite, L., Victorino de Brites Júnior, N., Depolo Barcelos, U., & Pereira Tognella, M. M. (2024). Concentraciones de hierro y manganeso en tejidos foliares de Rhizophora mangle (Rhizophoraceae): implicaciones para el metabolismo energético. Revista De Biología Tropical, 72(1), e56835. https://doi.org/10.15517/rev.biol.trop.v72i1.56835

Resumen

Introducción: El hierro (Fe) y el manganeso (Mn) son micronutrientes bioesenciales para las plantas, pero pueden afectar el metabolismo energético cuando están presentes en niveles altos. Objetivo: Evaluar el desempeño fotosintético y los daños oxidativos en tejidos foliares de Rhizophora mangle L. a bajas y altas concentraciones de Fe (74 y 195 mg kg-1; Feleaf) y Mn (65 y 414 mg kg-1; Mnleaf). Métodos: Se muestrearon pigmentos fotosintéticos, fluorescencia de clorofila a, asimilación e intercambio de gases de CO2 foliar y capacidad de eliminación de radicales DPPH en R. mangle que crece en bosques de estuarios en la región Norte del estado de Espírito Santo y el extremo Sur del Estado de Bahía (Brasil) mostrando Feleaf y Mnleaf bajos y altos. Resultados: No se identificaron efectos de niveles elevados de Fe y Mn en los niveles de pigmento. El aumento de Feleaf y Mnleaf en los niveles observados en esta evaluación tuvo un efecto positivo en el número de centros de reacción y en la eficiencia del complejo generador de oxígeno, evaluado como banda K, mientras que no se encontraron cambios en los parámetros relacionados con la eficiencia de atrapamiento de excitación en el centro activo del fotosistema II. Se identificaron distintos patrones de interferencia de Fe y Mn en los procesos funcionales de la fotosíntesis, especialmente en la asimilación de CO2 y el metabolismo de las especies reactivas de oxígeno, con efectos importantes en la asimilación de CO2 y la eficiencia de carboxilación de Rubisco a niveles altos de Mnleaf. Conclusión: Los hallazgos demuestran la eficiencia de R. mangle en la regulación positiva de la cadena de transporte de electrones en respuesta a los altos niveles de Fe y Mn, al menos en términos de preservación de la estructura y funcionalidad del aparato fotosintético de la planta. Además, la interferencia de Mnleaf alto en R. mangle se presenta a niveles no estomáticos y bioquímicos. Hay interferencia antagónica de estos oligoelementos con la fisiología de R. mangle, que es una especie dominante en los manglares brasileños.

https://doi.org/10.15517/rev.biol.trop..v72i1.56835
PDF (English)
HTML (English)
EPUB (English)

Citas

Ahmad, M. S. A., Hussain, M., Ijaz, S., & Alvi, A. K. (2008). Photosynthetic performance of two mung bean (Vigna radiata L. Wilczek) cultivars under lead and copper application. International Journal of Agriculture & Biology, 10(2), 167–176.

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2014). Köppen´s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.

Alves, A. A., Guimarães, L. M. S., Chaves, A. R. M., DaMatta, F. M., & Alfenas, A. C. (2011). Leaf gas exchange and chlorophyll a fluorescence of Eucalyptus urophylla in response to Puccinia psidii infection. Acta Physiology Plantarum, 33, 1831–1839.

Arar, E. J. (1997). Method 447.0-Determination of chlorophylls a and b and identification of other pigments of interest in marine and freshwater algae using high performance liquid chromatography with visible wavelength detection. U.S. Environmental Protection Agency, Washington.

Bailey-Serres, J., & Mittler, R. (2006). The roles of reactive oxygen species in plant cells. Plant Physiology, 141(2), 311.

Barcelos, U. D, Gontijo, A. B. P. L., Fernandes, A. A., Falqueto, A. R., Pascoalini, S. S., Lopes, D. M. S., Schmildt, E. R., Leite, S., & Tognella, M. M. P. (2022). The role of iron on the growth and development of the seedlings of Rhizophora mangle L. Scientific Research and Essays, 17(3), 35–45.

Celis-Hernandez, O., Giron-Garcia, M. P., Ontiveros-Cuadras, J. F., Canales-Delgadillo, J. C., Perez-Ceballos, R. Y., Ward, R. D., Acevedo-Gonzales, O., Armstrong-Altrinm, J. S., & Merino-Ibarra, M. (2020). Environmental risk of trace elements in mangrove ecosystems: an assessment of natural vs oil and urban inputs. Science Total Environment, 730, 138643.

Dal Prá, V., Dolwitsch, C. B., & Da Silveira, G. D. (2013). Supercritical CO2 extraction, chemical characterization and antioxidant potential of Brassica oleracea var. capitata against HO•, O2•- and ROO. Food Chemistry, 141(4), 3954–3959.

Dechen, A. R., & Nachtigall, G. R. (2006). Micronutrientes. In M. S. Fernandes (Ed.), Nutrição Mineral de Plantas (pp. 327–354). SBCS: Viçosa.

Förstner, U., & Witmann, G. T. W. (1981). Metal pollution in the aquatic environment (2nd Ed.). Springer-Verlag: New York.

Gao, D., Ran, C., Zhang, Y., Wang, X., Lu, S., Geng, Y., Guo, L., & Shao, X. (2022). Effect of different concentrations of foliar iron fertilizer on chlorophyll fluorescence characteristics of iron-deficient rice seedlings under saline sodic conditions. Plant Physiology and Biochemistry, 185, 112-122.

Gholami, M., Rahemi, M., Kholdebarin, B., & Rastegar, S. (2012). Biochemical responses in leaves of four fig cultivars subjected to water stress and recovery. Scientia Horticulturae, 148, 109–117.

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

Gilman, E. L., Ellison, J., Duke, N. C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: A review. Aquatic Botany, 89(2), 237–250.

Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856.

Instituto Brasileiro de Meio Ambiente e Recursos Naturais Renováveis. (2019). Laudo Técnico Preliminar: Impactos ambientais decorrentes do desastre envolvendo o rompimento da Barragem de Fundão, em Mariana, Minas Gerais (Downloaded: April 24, 2021). http://www.ibama.gov.br/phocadownload/barragemdefundao/laudos/laudo_tecnico_preliminar_Ibama.pdf

Instituto Nacional de Meteorologia. (2019). Mapa de Estações Meteorológicas. https://mapas.inmet.gov.br/

Joliot, P., & Joliot, A. (2002). Cyclic electron transfer in plant leaf. Proceedings of the National Academy of Sciences, 99(15), 10209–10214.

Jones-Junior, B. J. (2012). Plant nutrition and soil fertility manual (2nd Ed.). CRC Press; Boca Raton.

Krauss, K. W., Twilley, R. R., Doyle, T. W., & Gardiner, E. S. (2006). Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod. Tree Physiology, 26, 959–968.

Li, Q., Chen, L. S., & Jiang, H. X. (2010). Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant Biology, 10, 42.

Lopes, D. M. S., Tognella, M. M. P., Falqueto, A. R., & Soares, M. L. G. (2019). Salinity variation effects on photosynthetic responses of the mangrove species Rhizophora mangle L. growing in natural habitats. Photosynthetica, 57(4), 1142–1155.

Lovelock, C. E., Ball, M. C., Martin, K. C., & C. Feller, I. (2009). Nutrient enrichment increases mortality of mangroves. PloS One, 4(5), e5600.

Malavolta, E. A. (1980). Elementos de nutrição mineral de plantas. Ceres: São Paulo.

Mehta, P., Jajoo, A., Mathur, S., & Bharti, S. (2010). Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiology And Biochemistry, 48(1), 16–20.

Menezes, B. B., Frescura, L. M., Duarte, R., Villetti, M. A., & Rosa, M. B. (2021). A critical examination of the DPPH method: Mistakes and inconsistencies in stoichiometry and IC50 determination by UV Vis spectroscopy. Analytica Chimica Acta, 1157, 338398.

Mittler, R., Vanderauwera, S. M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490–498.

Najafpour, M. M., Isaloo, M. A., Eaton-Rye, J. J., Tomo, T., Nishihara, H., Satoh, K., Carpentier, R., Shen, J. R., & Allakhverdiev, S. I. (2014). Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: From the water-oxidizing complex in photosystem II to nano-sized manganese oxides. BBA Bioenergetics, 1837(9), 1395–1410.

Oliveira, G. C., Broetto, S. G., Pereira, O. J., Penha, J. S., Lopes, N. G. M., & Silva, D. M. (2022). Effects of different levels of metal exposure and precipitation regimes on chlorophyll a fluorescence parameters in a coastal Brazilian restinga species. Journal of Photochemistry and Photobiology, 12, 100153.

Pascoalini, S. P., Tognella, M. M. P., Falqueto, A. R., & Soares, M. L. G. (2022). Photosynthetic efficiency of young Rhizophora mangle L. in a mangrove in southeastern Brazil. Photosynthetica, 60(3), 337–349.

Sá, F., Longhini, C. M., Costa, E. S., Silva, C. A., Cagnin, R. C., Gomes, L. E. O., Lima, A. T., Bernardino, A. F., & Neto, R. R. (2021). Time-sequence development of metal(loid)s following the 2015 dam failure in the Doce river estuary, Brazil. Science of The Total Environment, 769, 144532.

Sanders, C. J., Eyre, B. D., Santos, I. R., Machado, W., Luiz-Silva, W., Smoak, J. M., Breithaupt, J. L., Ketterer, M. E., Sanders, L., Marotta, H., & Silva-Filho, E. (2014). Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophysical Research Letters, 41, 2475–2480.

Schreiber, U., & Neubauer, C. (1987). The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. II. Partial control by the photosystem II donor side and possible ways of interpretation. Zeitschrift für Naturforschung C, 42, 1246–1254.

Sheen, J. (1994). Feedback control of gene expression. Photosynthesis Research, 39(3), 427–438.

Silva, F. C. (2009). Manual de análises químicas de solos, plantas e fertilizantes (2nd Ed.). Embrapa Informação Tecnológica: Brasília.

Srivastava, A., & Strasser, R. J. (1997). Constructive and destructive actions of light on the photosynthetic apparatus. Journal of Scientific & Industrial Research, 56(9), 133–148.

Strasser, R. J, & Govindjee. (1992). The Fo and O-J-I-P fluorescence rise in higher plants and algae. In J. H. Argyroudi-Akoyunoglou (Ed.), Regulation of Chloroplast Biogenesis (pp. 423–426). Springer: New York.

Strasser, R. J, & Stirbet, A. D. (2001). Estimation of the energetic connectivity of PS II centres in plants using the fluorescence rise O-J-I-P. Mathematics and Computers in Simulation, 56(4), 451–461.

Strasser, R. J., Tsimilli-Michael, M., & Srivastava, A. (2004). Analysis of the chlorophyll a fluorescence transient. In G. Papageorgiou & Govindjee (Eds.), Advances in photosynthesis and respiration chlorophyll a fluorescence: a signature of photosynthesis (pp. 321–362). Springer: Dordrecht.

Szabó, I., Bergantino, E., & Giacometti, G. M. (2005). Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO reports, 6(7), 639–634.

Taiz, L., Zeiger, E., Møller, I.M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6th Ed.). Artmed: Porto Alegre.

Tognella, M. M. P., Falqueto, A. R., Espinoza, H. D. C. F., Gontijo, I., Gontijo, A. B. P. L., Fernandes, A. A., Schmildt, E. R., Soares, M. L. G., Chaves, F. O., Schmidt, A. J., Lopes, D. M. S., Barcelos, U. D., D'Addazio, V., Lima, K. O. O., Pascoalini, S. S., Paris, J. O., Brites-Júnior, N. V., Porto, L. A., Almeida-Filho, E., ... Albino, J. (2022). Mangroves as traps for environmental damage to metals: The case study of the Fundão Dam. Scince of the Total Environment, 806(4), 150452.

United States Environmental Protection Agency (2013). Electronic Code of Federal Regulations, Title 40-Protection of Environment, Part 423–Steam Electric Power Generating Point Source Category. Appendix A to Part 423–126: Priority Pollutants. https://www.law.cornell.edu/cfr/text/40/appendix-A_to_part_423

Varma, S., & Jangra, M. (2021). Heavy metals stress and defense strategies in plants: An overview. Journal of Pharmacognosy and Phytochemistry, 10(1), 608–614.

Vidal, R. M. B., & Becker, H. (2006). Distribuição de manganês, ferro, matéria orgânica e fosfato nos sedimentos do manguezal do Rio Piranji, Ceará. Arquivo de Ciências do Mar, 39(1), 34–43.

Wang, D., Hu, P., & Tie, N. (2022). Responses of photosynthesis and antioxidant activities in Koelreuteria paniculata young plants exposed to manganese stress. South African Jounal of Botany, 147, 340–348.

Wang, Q. R., Cui, Y. S., Liu, X. M., Dong, Y. T., & Christie, P. (2003). Soil contamination and uptake of heavy metals at polluted sites in China. Journal of Environmental Scince Health, 38(5), 823–838.

Wang, Y., Qu, T., Zhao, X., Tang, X., Xiao, H., & Tang, X. (2016). A comparative study of the photosynthetic capacity in two green tide macroalgae using chlorophyll fluorescence. SpringerPlus, 5, 775.

Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313.

Zhang, S., Li, Q., Ma, K., & Chen, L. (2001). Temperature-dependent gas exchange and stomatal/non-stomatal limitation to CO2 assimilation of Quercus liaotungensis under midday high irradiance. Photosynthetica, 39, 383–388.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2024 Revista de Biología Tropical

Descargas

Los datos de descargas todavía no están disponibles.