Resumen
Introducción: Costa Rica es un país comprometido en tratar temas ambientales, involucrando estrategias y políticas con objetivos de sostenibilidad y conservación. Sin embargo, aún se requiere trabajar en soluciones a varios problemas, entre los que se destacan actividades ilegales como la tala y el cambio de uso de suelo. Objetivo: Evaluar la capacidad de detección directa de las pérdidas de cobertura arbórea dentro de los diversos usos de suelo de un paisaje debido a la tala, y su relación con variables físicas del entorno como pendiente y proximidad a la red vial mediante técnicas de teledetección. Métodos: Las pérdidas de cobertura arbórea se detectaron mediante series temporales del Índice de Vegetación de Diferencia Normalizada (NDVI) en imágenes Landsat y Sentinel a través del algoritmo Breaks for Additive Season and Trend (BFAST) en la Reserva Forestal Golfo Dulce (RFGD) y el Corredor Biológico Amistosa (CBA). Los sitios seleccionados donde se detectó tala fueron visitados físicamente en el campo e inspeccionados utilizando vehículos aéreos no tripulados (UAVs). Los resultados se analizaron mediante matrices de confusión para determinar la precisión del algoritmo en detectar la tala ilegal. Resultados: El estudio resaltó que existe una relación entre el cambio de NDVI detectado y la existencia de tala en campo. En las áreas con cambios en el NDVI inferiores a -500 se obtuvo una precisión global superior al 75 % de modelo. Además, existe una relación entre las áreas taladas y la pendiente del terreno, así como su distancia a las vías de acceso. Conclusiones: La metodología propuesta permite identificar actividad de tala de la cobertura forestal en espacio y tiempo. Adoptar esta metodología e integrarla en las labores de monitoreo dentro de las instituciones gubernamentales permitirá un seguimiento más eficiente de la tala ilegal.
Citas
Anoma-Kouassi, C., Khan, D., Achille, L., Omifolaji, J. K., Espoire, M. M., Zhang, K., & Yang, X. (2022) Assessing change of Lamto Reserve Area Based on the MODIS time series data and bioclimatic factors using BFAST algorithms. American Journal of Plant Sciences, 13(4), 517–540. https://doi.org/10.4236/ajps.2022.134034
Ayhan, B., Kwan, C., Budavari, B., Kwan, L., Lu, Y., Perez, D., Li, J., Skarlatos, D., & Vlachos, M. (2020). Vegetation detection using deep learning and conventional methods. Remote Sensing, 12(15), 2502. https://doi.org/10.3390/rs12152502
Cadei, A., Mologni, O., Röser, D., Cavalli, R., & Grigolato, S. (2020). Forwarder productivity in salvage logging operations in difficult terrain. Forests, 11(3), 341. https://doi.org/10.3390/f11030341
Cipta, S., Suprihatin, S., Tarigan, S., & Effendi, H. (2019). Land use classification based on object and pixel using Landsat 8 OLI in Kendari City, Southeast Sulawesi Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 284, 012019. https://doi.org /10.1088/1755-1315/284/1/012019
Coulter, L., Stow, D., Tsai, Y., Ibanez, N., Shih, H., Kerr, A., Benza, M., Weeks, J. R., & Mensah, F. (2016). Classification and assessment of land cover and land use change in Southern Ghana using dense stacks of landsat 7 ETM+ imagery. Remote Sensing of Environment, 184, 396–409. https://doi.org/10.1016/j.rse.2016.07.016
Chuvieco, E. (2010). Teledetección ambiental: La observación de la Tierra desde el espacio. Editorial Ariel.
Díaz, J. (2015). Estudio de índices de vegetación a partir de imágenes aéreas tomadas desde UAS/RPAS y aplicaciones de estos a la agricultura de precisión [Master's tesis] Universidad Complutense de Madrid. España.
Dong, Y., Yin, D., Li, X., Huang, J., Su, W., Li, X., & Wang, H. (2021). Spatial–temporal evolution of vegetation NDVI in association with climatic, environmental and anthropogenic factors in the Loess Plateau, China during 2000–2015: Quantitative analysis based on geographical detector model. Remote Sensing, 13(21), 4380. https://doi.org/10.3390/rs13214380
Geng, L., Che, T., Wang, X., & Wang, H. (2019). Detecting spatiotemporal changes in vegetation with the BFAST model in the Qilian mountain region during 2000–2017. Remote Sensing, 11(2), 103. https://doi.org/10.3390/rs11020103
Gómez, D. (2019). Variación espacial y temporal de la vegetación en Baja California Sur, con énfasis en Áreas Naturales Protegidas [Master's tesis]. Centro de Investigaciones Biológicas del Noroeste, México.
Hoekman, D., Kooij, B., Quiñones, M., Vellekoop, S., Carolita, I., Budhiman, S., Arief, R., & Roswintiarti, O. (2020). Wide-area near-real-time monitoring of tropical forest degradation and deforestation using Sentinel-1. Remote Sensing, 12(19), 3263. https://doi.org/10.3390/rs12193263
Huang, S., Tang, L., Hupy, J., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32, 1–6. https://doi.org/10.1007/s11676-020-01155-1
Isaienkov, K., Yushchuk, M., Khramtsov, V., & Seliverstov, O. (2020). Deep learning for regular change detection in Ukrainian forest ecosystem with sentinel-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 364–376.
Le Coq, J.-F., Froger, G., Pesche, D., Legrand, T., & Saenz, F. (2015). Understanding the governance of the Payment for Environmental Services Programme in Costa Rica: A policy process perspective. Ecosystem Services, 16, 253–265. https://doi.org/10.1016/j.ecoser.2015.10.003
López-Alegría, A., Ríos, M. J., Flamenco-Sandoval, A., & Farfán-Gutiérrez, M. (2018). Análisis y modelación espacial de los patrones de deforestación (2005-2025) en la microcuenca La Unión del municipio de Chiapa de Corzo, Chiapas. Sociedad y Ambiente, 18(7), 117–143.
Marx, A., McFarlane, D., & Alzahrani, A. (2017). UAV data for multi-temporal Landsat analysis of historic reforestation: a case study in Costa Rica. International Journal of Remote Sensing, 38(8), 1–18. https://doi.org/10.1080/01431161.2017.1280637
Meera, G., Parthiban, S., Thummalu, N., & Christy, A. (2015). NDVI: Vegetation change detection using remote sensing and Gis-A case study of Vellore district. Procedia Computer Science, 57, 1199–1210, https://doi.org/10.1016/j.procs.2015.07.415
Ministerio de Ambiente y Energía. (2015). Estrategia Nacional REDD+ Costa Rica. MINAE, Costa Rica.
Miomir, J. M., Milanović, M. M., & Vračarević, B. R. (2018). Comparing NDVI and corine land cover as tools for improving national forest inventory updates and preventing illegal logging in Serbia. In A. Sebata (Ed.), Vegetation (pp. 1–22). InTech.
Muñoz, P. (2013). Apuntes de teledetección: Índices de vegetación. Centro de Información de Recursos Naturales, Chile.
Muñoz, E., Zozaya, A., & Lindquist, E. (2020). Satellite remote sensing of forest degradation using NDFI and the BFAST algorithm. IEEE Latin America Transactions, 18(07), 1288–1295. https://doi.org/10.1109/TLA.2020.9099771
Ngadi, Y., Lebourgeois, V., Laques, A. E., Dieye, M., Bourgoin, J., & Bégué, A. (2023). BFASTm-L2, an unsupervised LULCC detection based on seasonal change detection-An application to large-scale land acquisitions in Senegal. International Journal of Applied Earth Observation and Geoinformation, 121, 103379. https://doi.org/10.1016/j.jag.2023.103379
Olivares, B., & López-Beltrán, M. (2019). Índice de Vegetación Normalizada aplicado al territorio indígena agrícola de Kashaama, Venezuela. UNED Research Journal, 11(2), 112–121.
Pérez, N. (2021). Estimación de la deforestación en el Santuario Histórico Bosque de Pómac y su zona de amortiguamiento mediante modelos estocásticos y teledetección [Undergraduate's tesis]. Universidad Nacional Mayor de San Marcos, Perú.
Putz, F. E., Baker, T., Griscom, B. W., Gopalakrishna, T., Roopsind, A., Umunay, P. M., Zalman, J., Ellis, A. E., Ruslandi, & Ellis, P. W. (2019). Intact forest in selective logging landscapes in the tropics. Frontiers in Forests and Global Change, 2, 30. https://doi.org/10.3389/ffgc.2019.00030
QGIS.org (2021). QGIS geographic information system. Open-Source Geospatial Foundation Project. http://qgis.org
Quispe, M. (2021). Simulación geoespacial de la tasa de deforestación al 2030 en el distrito de Nueva Requena-Ucayali [Undergraduate's tesis]. Universidad Agraria de la Selva, Perú.
R Core Team. (2021). R: A language and environment for statistical computing (Software). R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/
Rimkus, E., Stonevicius, E., Kilpys, J., Maciulyte, V., & Valiukas, D. (2017). Drought identification in the eastern Baltic region using NDVI. Earth System Dynamics, 8(3), 627–637. https://doi.org/10.5194/esd-8-627-2017
Roman, M., & Angulo, J. (2013). Panorama socioeconómico de los cantones de Osa y Golfito: tendencias y desafíos para el desarrollo sostenible. Stanford Woods Institute for the Environment.
Rosero-Bixby, L., Maldonado-Ulloa, T., & Bonilla-Carrión, R. (2002). Bosque y población en la Península de Osa, Costa Rica. Revista de Biología Tropical, 50(2), 585–598.
Sistema Nacional de Áreas de Conservación. (2015). Cartografía base para el Inventario Forestal Nacional de Costa Rica 2013–2014. SINAC, Costa Rica.
Sistema Nacional de Áreas de Conservación. (2018). Corredor Biológico Amistosa: Plan de Gestión 2018–2027. SINAC, Costa Rica.
Sun, Y., Ren, H., Zhang, T., Zhang, C., & Qin, Q. (2018). Crop leaf area index retrieval based on inverted difference vegetation index and NDVI. IEEE Geoscience and Remote Sensing Letters, 15(11), 1662–1666. https://doi.org/10.1109/lgrs.2018.2856765
Tapia, A. (2011a). Mapa digital de temperaturas promedio para Costa Rica. Instituto Meteorológico Nacional.
Tapia, A. (2011b). Mapa digital de precipitaciones promedio para Costa Rica. Instituto Meteorológico Nacional.
Tondapu, G., Markert, K., Lindquist, E. J., Wiell, D., Díaz, A. S. P., Johnson, G., Ashmall, W., Chishtie, F., Ate, P., Tenneson, K., Patterson, M. S., Ricci, S., Fontanarosa, R., & Saah, D. (2018). A SERVIR FAO open source partnership: Co-development of open source web technologies using Earth Observation for Land Cover Mapping. American Geophysical Union, 2018, IN21B-27
Usman, M., Liedl, R., Shahid, M. A., & Abbas, A. (2015). Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. Journal of Geographical Sciences, 25(12), 1479–1506. https://doi.org/10.1007/s11442-015-1247-y
Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1), 106–115. https://doi.org/10.1016/j.rse.2009.08.014
Wu, Q., Liu, K., Song, C., Wang, J., Ke, L., Ma, R., Zhang, W., Pan, H., & Deng, X. (2018). Remote sensing detection of vegetation and landform damages by coal mining on the Tibetan Plateau. Sustainability, 10(11), 3851. https://doi.org/10.3390/su10113851
Yin, H., Pflugmacher, D., Li, A., Li, Z., & Hostert, P. (2018). Land use and land cover change in inner Mongolia-understanding the effects of china's re-vegetation programs. Remote Sensing of Environment, 204, 918–930. https://doi.org/10.1016/j.rse.2017.08.030
Zhang, X., Wu, S., Yan, X., & Chen, Z. (2016). A global classification of vegetation based on NDVI, rainfall and temperature. International Journal of Climatology, 37(5), 2318–2324. https://doi.org/10.1002/joc.4847
Zhu, Y., Wang, H. & Zhang, A. (2024). Satellite remote sensing reveals overwhelming recovery of forest from disturbances in Asia. Atmospheric and Oceanic Science Letters, 2024, 100511. https://doi.org/10.1016/j.aosl.2024.100511
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2024 Revista de Biología Tropical