Resumen
Introducción: En distintos países, la epidemia de covid-19 se ha manifestado en el espacio geográfico como conglomerados de alta morbilidad o zonas calientes, y como conglomerados de puntos fríos de baja incidencia, los que han sido explicados a partir de variables sociales. Objetivo: Caracterizar los patrones la morbilidad de covid-19 en Costa Rica entre marzo del 2020 y mayo del 2022, y explicarlos desde los determinantes sociales de la salud en el contexto geográfico. Métodos: Se diseñó un estudio ecológico a nivel distrital, con datos sobre vacunación contra covid-19, reportes semanales sobre la velocidad de avance de la epidemia, el nivel de desarrollo, y otros datos demográficos. Se construyeron mapas temáticos, se identificaron y caracterizaron los patrones geoespaciales de la morbilidad explicados a partir de modelos de regresión lineal y geográficamente ponderada. Resultados: Se identificaron conglomerados de puntos calientes en la Gran Área Metropolitana y su entorno, y puntos fríos que flanquean esta zona de alta incidencia. El modelo de regresión lineal que incluyó el promedio de vacunas por persona, la velocidad en el reporte de casos semanal, el desarrollo social en sus dimensiones económica, educacional y sanitaria, así como la proporción de viviendas hacinadas y de personas nacidas en el exterior, explicó más del 70 % de las variaciones espaciales de la incidencia de casos (bruta y estandarizada por edad y sexo). El modelo geográficamente ponderado corrigió problemas de autocorrelación mejorando la capacidad explicativa a un 82 %. Conclusiones: La morbilidad durante la epidemia de covid-19, en Costa Rica, durante el período evaluado, se configuró mediante conglomerados espaciales de puntos calientes y fríos muy bien establecidos. Esta estructura se pudo explicar desde los determinantes sociales de la salud, comprobando que se generan efectos en la morbilidad, diferenciados territorialmente.
Citas
Alencar-do Nascimento, C. M., Freire-de Souza, C. D., de Oliveira-Silva, L. E., Oliveira-Silva, W., Amaro-Barbosa, N., do Carmo, R. F., de Lima-Andrade, E., de Oliveira-Teixeira, S. H., & Matos-Rocha, T. J. (2022). COVID-19 risk areas associated with social vulnerability in northeastern Brazil: An ecological study in 2020. The Journal of Infection in Developing Countries, 16(08), 1285–1293. https://doi.org/10.3855/jidc.15214
Almeida, P. D., de Araújo, T. M. E., de Araújo Filho, A. C. A., Fuentes-Ferreira, A., Fronteira, I., de Melo-Júnior, E. B., & Almeida, M. G. (2021). Análise espaço-temporal da covid-19 em um estado brasileiro. Revista Baiana de Enfermagem, 35, e42740. https://doi.org/10.18471/rbe.v35.42740
Almendra, R., Santana, P., & Costa, C. (2021). Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal. Boletín de la Asociación de Geógrafos Españoles, (91), 1–27. https://doi.org/10.21138/bage.3160
Ataguba, O. A., & Ataguba, J. E. (2020). Social determinants of health: The role of effective communication in the COVID-19 pandemic in developing countries. Global Health Action, 13(1), 1788263. https://doi.org/10.1080/16549716.2020.1788263
Bashash, D., Abolghasemi, H., Naseri, P., Cheraghali, A. M., Soltanpoor, M. J., & Imani-Fooladi, A. A. (2021). The Association of Age, Sex, and RT-PCR Results with the Lymphocyte and Neutrophil Counts in SARS-CoV-2 Infection: A Cross-sectional Analysis of 1450 Iranian Patients with COVID-19. Iranian Journal of Allergy, Asthma and Immunologym, 20(2), 129–139. https://doi.org/10.18502/ijaai.v20i2.6046
Brugués-Rodríguez, A., Fuentes-Flores, N. A., & Ramírez-Cervantes, A. (2021). Análisis del patrón espacio-temporal de transmisión del COVID-19 por municipios de Baja California. Estudios Fronterizos, 22, e071. https://doi.org/10.21670/ref.2108071
Buffalo, L., & Rydzewski, A. L. (2021). Dinámica territorial de pandemia COVID-19 en la provincia de Córdoba Argentina. Boletín de la Asociación de Geógrafos Españoles, (91), 1–43. https://doi.org/10.21138/bage.3149
Colton, T. (1979). Estadística en Medicina. Masson-Little Brown and Company.
De Oliveira, F. R. A., Cunha, T. B., Herrero-da Silva, J., Atanaka, M., do Nascimento, V. F., & Terças-Trettel, A. C. P. (2022). Comorbidades em mato-grossenses hospitalizados com COVID-19 em 2020. Revista Sustinere, 9(2), 582–602. https://doi.org/10.12957/sustinere.2021.58575
Dhewantara, P. W., Puspita, T., Marina, R., Lasut, D., Riandi, M. U., Wahono, T., Ridwan, W., & Ruliansyah, A. (2022). Geo‐clusters and socio‐demographic profiles at village‐level associated with COVID‐19 incidence in the metropolitan city of Jakarta: An ecological study. Transboundary and Emerging Diseases, 69(4), e362–e373. https://doi.org/10.1111/tbed.14313
Dos Santos-Alves, J. C., Ribeiro, C. J. N., Lima, S. V. M. A., Morato, G. S., Andrade, L. A., Santos, M. B., Lopes-De Sousa, Á. F., Nogales-Crespo, K. A., Araújo, D. D. C., & Dos Santos, A. D. (2023). Did the COVID-19 Pandemic Disproportionately Affect the Most Socioeconomically Vulnerable Areas of Brazil? COVID, 3(6), 924–936. https://doi.org/10.3390/covid3060067
Duan, Y., Ma, J., Huang, Y., Chen, X., & Zheng, Z. J. (2021). State fragility and the coronavirus disease 2019 (COVID-19) pandemic: An ecologic analysis of data from 146 countries. Global Health Journal, 5(1), 18–23. https://doi.org/10.1016/j.glohj.2021.02.002
El Mouhayyar, C., Jaber, L. T., Bergmann, M., Tighiouart, H., & Jaber, B. L. (2022). Country‐level determinants of COVID‐19 case rates and death rates: An ecological study. Transboundary and Emerging Diseases, 69(4), e906–e915. https://doi.org/10.1111/tbed.14360
Environmetal Systems Research Institute. (2021). Autocorrelación espacial (I de Moran global) (Estadística espacial). [Documentación]. ArcGIS Pro 3.3. https://pro.arcgis.com/es/pro-app/latest/tool-reference/spatial-statistics/spatial-autocorrelation.htm#L_
Fernández-Martínez, N. F., Ruiz-Montero, R., Gómez-Barroso, D., Rodríguez-Torronteras, A., Lorusso, N., Salcedo-Leal, I., & Sordo, L. (2022). Socioeconomic differences in COVID-19 infection, hospitalisation and mortality in urban areas in a region in the South of Europe. BMC Public Health, 22, 2316. https://doi.org/10.1186/s12889-022-14774-6
Habibi, Y., Guellouh, S., Filali, A., & Berchiche, R. (2020). Analysis of social resilence to the novel coronavirus (COVID-19) in Algeria. Geomatics, Landmanagement and Landscape, (3), 19–29. https://doi.org/10.15576/GLL/2020.3.19
Hastari, W. I., Lolita, D. A., & Fauzi, L. (2023). Spatial and temporal analysis of covid-19 cases distribution in Sukoharjo regency. Jurnal Berkala Epidemiologi, 11(2), 151–159. https://doi.org/10.20473/jbe.V11I22023.151-159
Instituto Nacional de Estadística y Censos. (s. f.). Proyecciones de Población 2000-2025. https://inec.cr/estadisticas-fuentes/estadisticas-demograficas?filtertext=proyecciones%2520de%2520poblaci%25C3%25B3n
Ismail, S. N. S., Abidin, E. Z., Rasdi, I., Ezani, N. E., Che, N., & Shamsuddin, A. S. (2021). COVID-19: The Epidemiological Hotspot and the Disease Spread in Malaysia Malaysian Journal of Medicine and Health Sciences, 17(S8), 42–50.
Jaljaa, A., Caminada, S., Tosti, M. E., D’Angelo, F., Angelozzi, A., Isonne, C., Marchetti, G., Mazzalai, E., Giannini, D., Turatto, F., De Marchi, C., Gatta, A., Declich, S., Pizzarelli, S., Geraci, S., Baglio, G., & Marceca, M. (2022). Risk of SARS-CoV-2 infection in migrants and ethnic minorities compared with the general population in the European WHO region during the first year of the pandemic: A systematic review. BMC Public Health, 22(1), 143. https://doi.org/10.1186/s12889-021-12466-1
Kabir, K., Taherinia, A., Ashourloo, D., Khosravi, A., Karim, H., Salehi-Shahrabi, H., Hedayat-Yaghoobi, M., Soleimani, A., Siami, Z., Noorisepehr, M., Tajbakhsh, R., Maghsoudi, M. R., Lak, M., Mardi, P., Nouri, B., Mohammadzadeh, M., Azimzadeh, M., & Bakhtiyari, M. (2021). Epidemic size, trend and spatiotemporal mapping of SARS-CoV-2 using geographical information system in Alborz Province, Iran. BMC Infectious Diseases, 22(1), 1185. https://doi.org/10.1186/s12879-021-06870-6
Khobragade, A., & Kadam, D. (2021). Spatial mapping and socio-demographic determinants of COVID-19 mortality in India. Journal of Family Medicine and Primary Care, 10(11), 4200–4204. https://doi.org/10.4103/jfmpc.jfmpc_903_21
Leal-Lima, D., Morais, T. C., Guerrero-Daboin, B., Emídio-Cavalcanti, M. P., Mesaroch, A., Ramos-da Silva, H. M., Guarnieri-da Silva, C., Bandeira-de Mello-Monteiro, C., & de Abreu, L. C. (2021). Epidemiological perspective of the evolution of the COVID-19 pandemic in Amapá State, Northern Brazil. Journal of Human Growth and Development, 31(3), 414–424. https://doi.org/10.36311/jhgd.v31.12610
Maroko, A. R., Nash, D., & Pavilonis, B. T. (2020). COVID-19 and inequity: A comparative spatial analysis of New York City and Chicago hot spots. Journal of Urban Health, 97(4), 461–470. https://doi.org/10.1007/s11524-020-00468-0
Martines, M. R., Ferreira, R. V., Toppa, R. H., Assunção, L. M., Desjardins, M. R., & Delmelle, E. M. (2021). Detecting space–time clusters of COVID-19 in Brazil: Mortality, inequality, socioeconomic vulnerability, and the relative risk of the disease in Brazilian municipalities. Journal of Geographical Systems, 23(1), 7–36. https://doi.org/10.1007/s10109-020-00344-0
Matsumoto, P. S. S., Tenório-Crepaldi, M., Avanzi-Júnior, P. S., Buttler-de Oliveira, M., de Sousa-Regala, R. M., Vasco-Rosseal, T., & Pereira-Caetano-de Lima, J. P. (2020). Mapeamento de covid-19 e isolamento social: Ferramentas de monitoramento e vigilância em saúde pública. Hygeia: Revista Brasileira de Geografia Médica e da Saúde, 298–311. https://doi.org/10.14393/Hygeia0054553
Ministerio de Planificación de la República de Costa Rica. (2017). Índice de Desarrollo Social 2017. MIDEPLAM.
Miramontes-Carballada, Á., & Balsa-Barreiro, J. (2021). Territorial impact of the COVID-19 pandemic in Galicia (Spain): A geographical approach. Boletín de La Asociación de Geógrafos Españoles, (91), 1–33. https://doi.org/10.21138/bage.3157
Muñoz, E. N., Leon, M. E., Kovacic, F., & Palacios, M. P. (2021). Tendencia de mortalidad no relacionadas con covid-19 en la región del bio-bio, periodo 2016-2020. Revista ANECEM, 15(1), 42–48.
Obuekwe, I. S., Anka, U. S., Ibrahim, S. O., & Adam, U. A. (2021). Quantifying the significance of distance to temporal dynamics of Covid-19 cases in Nigeria using a geographic information system. Geosfera Indonesia, 6(1), 40–54. https://doi.org/10.19184/geosi.v6i1.21405
Organización de las Naciones Unidas. (10 de enero de 2024). La Organización Mundial de la Salud pide no bajar la guardia contra el COVID-19. Noticias de la ONU. https://news.un.org/es/story/2024/01/1526977
Organización Mundial de la Salud. (2008). Subsanar las desigualdades en una generación. Alcanzar la equidad sanitaria actuando sobre los determinantes sociales de la salud. Organización Mundial de la Salud.
Organización Mundial de la Salud. (6 de abril de 2021a). Comunicados de prensa: La OMS insta a los países a construir un mundo más justo y saludable tras la pandemia COVID-19. [Comunicado de prensa]. https://www.who.int/es/news/item/06-04-2021-who-urges-countries-to-build-a-fairer-healthier-world-post-covid-19
Organización Mundial de la Salud. (8 de enero 2021b). Determinantes Sociales de la Salud: Informe del Director General (EB148/24). Consejo Ejecutivo, 148ª reunión. Organización Mundial de la Salud.
Organización Panamericana de la Salud. (28 de abril de 2023). Recomendaciones actualizadas sobre las vacunas contra la COVID-19 del Grupo de Expertos en Asesoramiento Estratégico de la Organización Mundial de la Salud, 30 de marzo del 2023. Organización Panamericana de la Salud. https://iris.paho.org/handle/10665.2/57418
Orozco, A. P., Texidor-Garzón, M. C., Pujol, C. P., Miranda-Reyes, S. C., & Manet-Lahera, L. R. (2021). Telepidemiología en el enfrentamiento a la COVID-19 en la provincia Santiago de Cuba. Revista Cubana de Salud Pública., 47(1), e2672.
Paternina-Caicedo, A., Alvis-Guzmán, N., Dueñas, C., Narvaez, J., Smith, A. D., & de La Hoz-Restrepo, F. (2022). Impact of mobility restrictions on the dynamics of transmission of COVID-19 in Colombian cities. International Health, 14(3), 332–335. https://doi.org/10.1093/inthealth/ihab064
Pérez-Rodríguez, N., Noa, R. R., Torres-Reyes, A., Veranes-Miranda, A., Fernández-Lorenzo, J. M., Álvarez, V. O., Garma, D., Más Bermejo, P., & Sánchez-Valdés, L. (2020). Distribución de la población vulnerable a la enfermedad COVID-19 en La Habana, Cuba. Revista Cubana de Higiene y Epidemiología, 57(1), e371.
QGIS. (2019). QGIS (version 3.10 for Desktop, software). https://docs.qgis.org/3.10/en/docs/index.html
Rué, M., & Borrell, C. (1993). Los métodos de estandarización de tasas. Revisiones en Salud Pública, (3), 263–295.
Silva, A. P., Albuquerque-Ribeiro, M., Paiva-Emídio, M., Guerrero-Daboin, B. E., Morais, T. C., Pelegrini-de Oliveira-Abreu, C. I., Pinheiro-Bezerra, I. M., & De Abreu, L. C. (2022). COVID-19 in the municipalities of Botucatu and Serrana, São Paulo, Brazil, the effects of lethality and mortality. Journal of Human Growth and Development, 32(2), 302–314. https://doi.org/10.36311/jhgd.v32.13255
Souza, S. S., Costa, E. L., Calazans, M. I. P., Antônio, M. M. P., Dias, C. R. C., & Cardoso, J. P. (2022). Análise espacial dos casos de COVID-19 notificados no estado da Bahia, Brasil. Cadernos Saúde Coletiva, 30(4), 572–583. https://doi.org/10.1590/1414-462x202230040307
Topf, K. G., Sheppard, M., Marx, G. E., Wiegand, R. E., Link-Gelles, R., Binder, A. M., Cool, A. J., Lyons, B. C., Park, S., Fast, H. E., Presnetsov, A., Azondekon, G. R., Soetebier, K. A., Adjemian, J., & Barbour, K. E. (2022). Impact of the COVID-19 vaccination program on case incidence, emergency department visits, and hospital admissions among children aged 5-17 Years during the Delta and Omicron Periods-United States, December 2020 to April 2022. PLOS ONE, 17(12), e0276409. https://doi.org/10.1371/journal.pone.0276409
Turner, N. A., Pan, W., Martinez-Bianchi, V. S., Maradiaga-Panayotti, G. M., Planey, A. M., Woods, C. W., & Lantos, P. M. (2021). Racial, ethnic, and geographic disparities in novel coronavirus (severe acute respiratory syndrome coronavirus 2) test positivity in North Carolina. Open Forum Infectious Diseases, 8(1), ofaa413. https://doi.org/10.1093/ofid/ofaa413
Upshaw, T. L., Brown, C., Smith, R., Perri, M., Ziegler, C., & Pinto, A. D. (2021). Social determinants of COVID-19 incidence and outcomes: A rapid review. PLOS ONE, 16(3), e0248336. https://doi.org/10.1371/journal.pone.0248336
Vicente-Ferreira, R., Carvalho, D. M., Souza, A. L. de P., Martines, M. R., & Assunção, L. M. de. (2020). COVID-19 na região de saúde triângulo sul, mg: uma perspectiva cartográfica. Hygeia: Revista Brasileira de Geografia Médica e da Saúde, 49–59. https://doi.org/10.14393/Hygeia0054379
Villalobos-Dintrans, P., Castillo, C., de la Fuente, F., & Maddaleno, M. (2021). COVID-19 incidence and mortality in the Metropolitan Region, Chile: Time, space, and structural factors. PLOS ONE, 16(5), e0250707. https://doi.org/10.1371/journal.pone.0250707
Villca-Villegas, J. L., Condori-Salluco, N. F., & Alarcon-Arteaga, A. (2022). Estudio ecológico de hogares bolivianos y su relación con la COVID-19, Gestión 2020. Gaceta Médica Boliviana, 45(1), 17–22. https://doi.org/10.47993/gmb.v45i1.360
Viswanath, K., Bekalu, M., Dhawan, D., Pinnamaneni, R., Lang, J., & McLoud, R. (2021). Individual and social determinants of COVID-19 vaccine uptake. BMC Public Health, 21, 818. https://doi.org/10.1186/s12889-021-10862-1
Wang, L., Xu, C., Wang, J., Qiao, J., Yan, M., & Zhu, Q. (2021). Spatiotemporal heterogeneity and its determinants of COVID-19 transmission in typical labor export provinces of China. BMC Infectious Diseases, 21, 242. https://doi.org/10.1186/s12879-021-05926-x
Zamora-Matamoros, L., Sagaró-del-Campo, N. M., Valdés-García, L. E., & Díaz-Silvera, J. (2021). Viajeros internacionales y otros indicadores de la transmisión de la COVID-19 en la provincia Santiago de Cuba International travelers and other indicators of COVID-19 transmission in Santiago de Cuba. MediSur, 19(5), 787–797.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2024 Revista de Biología Tropical