Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Técnicas moleculares recientes que fortalecen los estudios ecológicos de equinodermos
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

echinoderms; stable isotopes; 16S rRNA; DNA-metabarcoding; ecology; review.
equinodermos; isótopos estables; ARNr 16S; metabarcoding de ADN; ecología; revisión.

Cómo citar

Rodríguez-Barreras, R. (2024). Técnicas moleculares recientes que fortalecen los estudios ecológicos de equinodermos. Revista De Biología Tropical, 72(S1), e58880. https://doi.org/10.15517/rev.biol.trop.v72iS1.58880

Resumen

Introducción: Los equinodermos, un componente integral de los ecosistemas marinos en todo el mundo, han captado el interés científico durante siglos. A pesar de esta prolongada atención, el comprender facetas clave como las relaciones tróficas, la composición de la dieta y las relaciones huésped-microbiota todavía representa un desafío utilizando técnicas tradicionales. Sin embargo, los últimos años han sido testigos de un cambio transformador, gracias a la aparición de técnicas moleculares avanzadas, que ofrecen nuevos enfoques para fortalecer los estudios ecológicos en equinodermos.

Objetivo: Explorar cómo los avances recientes en herramientas moleculares han impactado la investigación ecológica sobre equinodermos. Específicamente, nuestro objetivo es investigar el potencial de estas herramientas para arrojar luz sobre las interacciones tróficas, la composición de la dieta y la caracterización de las comunidades microbianas intestinales en estos organismos.

Métodos: Se utilizó la literatura disponible para aclarar cómo las nuevas técnicas moleculares pueden mejorar los estudios ecológicos. La atención se centra en la dieta, las relaciones tróficas y la microbiota intestinal.

Resultados: Tradicionalmente, los estudios del contenido estomacal mediante microscopía compuesta han proporcionado una idea del material ingerido; Sin embargo, a veces una simple visualización ampliada del contenido dietético no permite una identificación exhaustiva de todo el espectro alimentario, ya que está limitado debido a la rápida digestión y maceración de los alimentos dentro del tracto digestivo del equinodermo. El uso de metabarcoding de ADN, dirigidos a regiones específicas del ADN, como el gen COI mitocondrial, nos ha permitido mejorar la exactitud y precisión de la caracterización de la dieta al permitir la identificación de presas hasta el nivel de especie o incluso de variante genética, lo que proporciona valiosos resultados sobre preferencias dietéticas específicas. Otro enfoque es el uso de isótopos estables, en particular carbono y nitrógeno, que proporcionan una poderosa herramienta para rastrear el origen y el flujo de nutrientes a través de las redes alimentarias. Al analizar las firmas isotópicas en los tejidos musculares y los alimentos, podemos discernir las fuentes de sus alimentos primarios y obtener información sobre su posición trófica dentro del ecosistema. Por último, una tercera técnica nueva utilizada para dilucidar la caracterización de la comunidad procariótica es la secuenciación del ARNr 16S. Este método nos permite explorar la composición y dinámica de las comunidades microbianas del tracto digestivo.

Conclusiones: Esta es una era prometedora para la investigación ecológica sobre equinodermos, donde los avances de las herramientas moleculares han permitido un nivel de detalle sin precedentes, resolviendo desafíos de larga data en la comprensión de sus interacciones tróficas, composición de la dieta y relaciones huésped-microbiota, y abriendo nuevas vías de investigación. en estudios ecológicos.

https://doi.org/10.15517/rev.biol.trop..v72iS1.58880
PDF (English)
HTML (English)
EPUB (English)

Citas

Alcudia-Catalma, M. N., Diaz, M. G. Q., Garcia, R. N., Ocampo, P. P., Laurena, A. C., & Tecson-Mendoza, E. M. (2020). DNA barcoding and diversity analysis of 19 economically important Philippine sea cucumbers (Holothuroidea). Philippine Journal of Science, 149(2), 335–346.

Antil, S., Abraham, J. S., Sripoorna, S., Maurya, S., Dagar, J., Makhija, S., Bhagat. P., Gupta, R., Sood, U., & Toteja, R. (2023). DNA barcoding, an effective tool for species identification: a review. Molecular Biology Reports, 50(1), 761–775. https://doi.org/10.1007/s11033-022-08015-7

Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics, 17, 1–17. https://doi.org/10.1007/s10592-015-0775-4

Baure, J. G., Roleda, M. Y., & Juinio-Meñez, M. A. (2023). Short-term exposure to independent and combined acidification and warming elicits differential responses from two tropical seagrass-associated invertebrate grazers. Marine Biology, 170, 114. https://doi.org/10.1007/s00227-023-04262-9

Boissin, E., Hoareau, T. B., Paulay, G., & Bruggemann, J. H. (2017). DNA barcoding of reef brittle stars (Ophiuroidea, Echinodermata) from the southwestern Indian Ocean evolutionary hot spot of biodiversity. Ecology and Evolution, 7(24), 11197–11203. https://doi.org/10.1002/ece3.3554

Borrero-Pérez, G. H., Benavides-Serrato, M., Campos, N. H., Galeano-Galeano, E., Gavio, B., Medina, J., & Abril-Howard, A. (2019). Echinoderms of the Seaflower Biosphere Reserve: state of knowledge and new findings. Frontiers in Marine Science, 6, 188. https://doi.org/10.3389/fmars.2019.00188

Bourlat, S. J., Borja, A., Gilbert, J., Taylor, M. I., Davies, N., Weisberg, S. B., Griffith, J. F., Lettieri, T., Field, D., Benzie, J., Glöckner, F. O., Rodríguez-Ezpeleta, N., Faith, P. D., Bean, R. P., & Obst, M. (2013). Genomics in marine monitoring: new opportunities for assessing marine health status. Marine Pollution Bulletin, 74(1), 19–31. https://doi.org/10.1016/j.marpolbul.2013.05.042

Brigmon, R. L., & De Ridder, C. (1998). Symbiotic relationship of Thiothrix spp. with an echinoderm. Applied and Environmental Microbiology, 64(9), 3491–3495. https://doi.org/10.1128/AEM.64.9.3491-3495.1998

Burton, T., Killen, S. S., Armstrong, J. D., & Metcalfe, N. B. (2011). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proceedings of the Royal Society B: Biological Sciences, 278(1724), 21957133. https://doi.org/10.1098/rspb.2011.1778

Cabanillas-Terán, N., Loor-Andrade, P., Rodríguez-Barreras, R., & Cortés, J. (2016). Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador. PeerJ, 4, e1578. https://doi.org/10.7717/peerj.1578

Cabanillas-Terán, N., Hernández-Arana, H. A., Ruiz-Zárate, M. Á., Vega-Zepeda, A., & Sanchez-Gonzalez, A. (2019). Sargassum blooms in the Caribbean alter the trophic structure of the sea urchin Diadema antillarum. PeerJ, 7, e7589. https://doi.org/10.7717/peerj.7589

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2010). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108(Suppl. 1), 4516–4522. https://doi.org/10.1073/pnas.1000080107

Carney, R. S. (2010). Stable isotope trophic patterns in echinoderm megafauna in close proximity to and remote from Gulf of Mexico lower slope hydrocarbon seeps. Deep Sea Research Part II: Topical Studies in Oceanography, 57(21–23), 1965–1971. https://doi.org/10.1016/j.dsr2.2010.09.027

Carrier, T. J., Leigh, B. A., Deaker, D. J., Devens, H. R., Wray, G. A., Bordenstein, S. R., Byrne, A. M. & Reitzel, A. M. (2021). Microbiome reduction and endosymbiont gain from a switch in sea urchin life history. Proceedings of the National Academy of Sciences, 118(16), e2022023118. https://doi.org/10.1073/pnas.2022023118

Chikaraishi, Y., Kashiyama, Y., Ogawa, N. O., Kitazato, H., & Ohkouchi, N. (2007). Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: implications for aquatic food web studies. Marine Ecology Progress Series, 342, 85–90. https://doi.org/10.3354/meps342085

Compson, Z. G., Monk, W. A., Curry, C. J., Gravel, D., Bush, A., Baker, C. J., Al Manir. M. S., Riazanov, A., Hajibabaei, M., Shokralla, S., Gibson, J. F., Stefani, S., Wright, M., & & Baird, D. J. (2018). Linking DNA metabarcoding and text mining to create network-based biomonitoring tools: A case study on Boreal wetland macroinvertebrate communities. In D. A. Bohan, A. J. Dumbrell, G. Woodward, & M. Jackson (Eds.), Advances in ecological research (Vol. 59, pp. 33–74). Academic Press.

Connolly, R. M., Guest, M. A., Melville, A. J., & Oakes, J. M. (2004). Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia, 138, 161–167. https://doi.org/10.1007/s00442-003-1415-0

Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J. C., & Altermatt, F. (2016). Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nature Communications, 7, 12544. https://doi.org/10.1038/ncomms12544

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072. https://doi.org/10.1128/AEM.03006-05

Dong, Y., Li, Y., He, P., Wang, Z., Fan, S., Zhang, Z., Zhang, X., & Xu, Q. (2021). Gut microbial composition and diversity in four ophiuroid species: divergence between suspension feeder and scavenger and their symbiotic microbes. Frontiers in Microbiology, 12, 645070. https://doi.org/10.3389/fmicb.2021.645070

Franzenburg, S., Fraune, S., Künzel, S., Baines, J. F., Domazet-Lošo, T., & Bosch, T. C. (2012). MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proceedings of the National Academy of Sciences, 110(47), 19374–19379. https://doi.org/10.1073/pnas.1213110109

Fry, B., & Sherr, E. B. (1984). δ^13C measurements as indicators of carbon flow in marine and freshwater ecosystems. In P. W., Rundel, J. R. Whleringer, & K. A. Nagy (Eds.), Stable isotopes in ecological research. Ecological studies, (Vol. 68, pp. 13–47) Springer. https://doi.org/10.1007/978-1-4612-3498-2_12

Galac, M. R., Bosch, I., & Janies, D. A. (2016). Bacterial communities of oceanic sea star (Asteroidea: Echinodermata) larvae. Marine Biology, 163, 162. https://doi.org/10.1007/s00227-016-2938-3

Gale, K. S., Hamel, J. F., & Mercier, A. (2013). Trophic ecology of deep-sea Asteroidea (Echinodermata) from eastern Canada. Deep Sea Research Part I: Oceanographic Research Papers, 80, 25–36. https://doi.org/10.1016/j.dsr.2013.05.016

García-Aljaro, C., Ballesté, E., Muniesa, M., & Jofre, J. (2017). Determination of crAssphage in water samples and applicability for tracking human faecal pollution. Microbial Biotechnology, 10(6), 1775–1780. https://doi.org/10.1111/1751-7915.12841

Gerringer, M. E. (2019). On the success of the hadal snailfishes. Integrative Organismal Biology, 1(1), obz004. https://doi.org/10.1093/iob/obz004

Gilbert, J. A., Jansson, J. K., & Knight, R. (2014). The Earth Microbiome project: successes and aspirations. BMC Biology, 12, 69. https://doi.org/10.1186/s12915-014-0069-1

Godin, J. P., & McCullagh, J. S. (2011). Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS). Rapid Communications in Mass Spectrometry, 25(20), 3019–3028. https://doi.org/10.1002/rcm.5167

González-De Zayas, R., Rossi, S., Hernández-Fernández, L., Velázquez-Ochoa, R., Soares, M., Merino-Ibarra, M., Castillo-Sandoval, F. S., & Soto-Jiménez, M. F. (2020). Stable isotopes used to assess pollution impacts on coastal and marine ecosystems of Cuba and México. Regional Studies in Marine Science, 39, 101413. https://doi.org/10.1016/j.rsma.2020.101413

Gudenkauf, B. M., & Hewson, I. (2015). Metatranscriptomic analysis of Pycnopodia helianthoides (Asteroidea) affected by sea star wasting disease. PLoS One, 10(5), e0128150. https://doi.org/10.1371/journal.pone.0128150

Gurney, L. J., Froneman, P. W., Pakhomov, E. A., & McQuaid, C. D. (2001). Trophic positions of three euphausiid species from the Prince Edward Islands (Southern Ocean): implications for the pelagic food web structure. Marine Ecology Progress Series, 217, 167–174. https://doi.org/10.3354/meps217167

Hakim, J. A., Koo, H., Kumar, R., Lefkowitz, E. J., Morrow, C. D., Powell, M. L., Watts, S. A., & Bej, A. K. (2016). The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles. FEMS Microbiology Ecology, 92(9), fiw146. https://doi.org/10.1093/femsec/fiw146

Hakim, J. A., Schram, J. B., Galloway, A. W., Morrow, C. D., Crowley, M. R., Watts, S. A., & Bej, A. K. (2019). The purple sea urchin Strongylocentrotus purpuratus demonstrates a compartmentalization of gut bacterial microbiota, predictive functional attributes, and taxonomic co-occurrence. Microorganisms, 7(2), 35. https://doi.org/10.3390/microorganisms7020035

Hassan, S., Sabreena, Poczai, P., Ganai, B. A., Almalki, W. H., Gafur, A., & Sayyed, R. Z. (2022). Environmental DNA Metabarcoding: A Novel contrivance for documenting terrestrial biodiversity. Biology, 11(9), 1297. https://doi.org/10.3390/biology11091297

Hayes, J. M. (2001). Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. Reviews in Mineralogy and Geochemistry, 43(1), 225–277. https://doi.org/10.2138/gsrmg.43.1.225

Hebert, P. D., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218

Hewson, I., Ritchie, I. T., Evans, J. S., Altera, A., Behringer, D., Bowman, E., Brandt, M., Budd, K. A., Camacho, R. A., Cornwell, T. O., Countway, P. D., Croquer, A., Delgado, G. A., Derito, C., Duermit-Moreau, E., Francis-Floyd, R., Gittens Jr., S., Henderson, L., Hylkema, A. … Breitbart, M. (2023). A scuticociliate causes mass mortality of Diadema antillarum in the Caribbean Sea. Science Advances, 9(16), eadg3200. https://doi.org/10.1126/sciadv.adg3200

Hobson, K. A. (2023). Stable isotopes and a changing world. Oecologia, 00, 1–18. https://doi.org/10.1007/s00442-023-05387-w

Hobson, K. A., & Welch, H. E. (1992). Determination of trophic relationships within a high Arctic marine food web using δ 13 C and δ 15 N analysis. Marine Ecology Progress Series, 84, 9–18.

Hobson, K. A., Ambrose Jr, W. G., & Renaud, P. E. (1995). Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis. Marine Ecology Progress Series, 128, 1–10. https://doi.org/10.3354/meps128001

Howell, K. L., Pond, D. W., Billett, D. S., & Tyler, P. A. (2003). Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fatty-acid biomarker approach. Marine Ecology Progress Series, 255, 193–206. https://doi.org/10.3354/meps255193

Jackson, E. W., Pepe-Ranney, C., Debenport, S. J., Buckley, D. H., & Hewson, I. (2018). The microbial landscape of sea stars and the anatomical and interspecies variability of their microbiome. Frontiers in Microbiology, 9, 1829. https://doi.org/10.3389/fmicb.2018.01829

Jia, C., Zhang, Y., Xu, Q., Sun, C., Wang, Y., & Gao, F. (2022). Comparative analysis of in situ eukaryotic food sources in three tropical sea cucumber species by metabarcoding. Animals, 12(17), 2303. https://doi.org/10.3390/ani12172303

Keeling, C. D., Whorf, T. P., Wahlen, M., & Van der Plicht, J. (1995). Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375, 666–670. https://doi.org/10.1038/375666a0

Ketchum, R. N., Smith, E. G., Vaughan, G. O., McParland, D., Al-Mansoori, N., Burt, J. A., & Reitzel, A. M. (2021). Unraveling the predictive role of temperature in the gut microbiota of the sea urchin Echinometra sp. EZ across spatial and temporal gradients. Molecular Ecology, 30(15), 3869–3881. https://doi.org/10.1111/mec.15990

Killingley, J. S., & Rex, M. A. (1985). Mode of larval development in some deep-sea gastropods indicated by oxygen-18 values of their carbonate shells. Deep Sea Research Part A. Oceanographic Research Papers, 32(7), 809–818. https://doi.org/10.1016/0198-0149(85)90117-7

Kodama, M., Yamazaki, R., Hayakawa, J., Murata, G., Tomikawa, K., Kawamura, T., Kume, G., & Kobari, T. (2023). Feeding ecology of the obligate urchin symbiont Dactylopleustes yoshimurai (Crustacea: Amphipoda: Pleustidae) revealed by DNA metabarcoding analysis [Preprint]. Marine Biology, 00, 1–19. https://doi.org/10.21203/rs.3.rs-2655652/v1

Layton, K. K., Corstorphine, E. A., & Hebert, P. D. (2016). Exploring Canadian echinoderm diversity through DNA barcodes. PloS One, 11(11), e0166118. https://doi.org/10.1371/journal.pone.0166118

Leray, M., & Knowlton, N. (2015). DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proceedings of the National Academy of Sciences, 112(7), 2076–2081. https://doi.org/10.1073/pnas.1424997112

Leray, M., & Knowlton, N. (2016). Censusing marine eukaryotic diversity in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1702), 20150331. https://doi.org/10.1098/rstb.2015.0331

Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N., Ranwez, V., Boehm, J. T., & Knowlton, N. (2013). A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology, 10(1), 34. https://doi.org/10.1186/1742-9994-10-34

Lester, S. E., Ruttenberg, B. I., Gaines, S. D., & Kinlan, B. P. (2007). The relationship between dispersal ability and geographic range size. Ecology Letters, 16(6), 742–747. https://doi.org/10.1111/j.1461-0248.2007.01070.x

Levin, L. A. (2006). Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology, 46(3), 282–297. https://doi.org/10.1093/icb/icj024

Licuanan, A. M., & Matias, A. M. A. (2022). In silico evaluation of the taxonomic resolution and coverage of the COI region and alternative barcode markers for echinoderms. Philippine Journal of Science, 151(3), 955–968. https://doi.org/10.56899/151.03.14

Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., Chaffron, S., Ignacio-Espinosa, J. C., Roux, S., Vincent, F., Bittner, L., Darzi, Y., Wang, J., Audic, S., Berline, L., Bontempi, G., Cabello, A. M., Coppola, L., Cornejo-Castillo, F. M., … Raes, J. (2015). Determinants of community structure in the global plankton interactome. Science, 348(6237), 1262073. https://doi.org/10.1126/science.1262073

Lowe, E. K., Cuomo, C., & Arnone, M. I. (2017). Omics approaches to study gene regulatory networks for development in echinoderms. Briefings in Functional Genomics, 16(5), 299–308. https://doi.org/10.1093/bfgp/elx012

Luo, K., Su, M., Liu, S., Shi, J., Wang, C., Chen, H., Yang, S., Lin, Z., & Wei, L. (2023). Sea-level, climate, and oceanographic controls on recent deepwater hyperpycnites: A case example from the shenhu slope (northern South China Sea). Quaternary Science Reviews, 311, 108148. https://doi.org/10.1016/j.quascirev.2023.108148

Marangon, E., Laffy, P. W., Bourne, D. G., & Webster, N. S. (2021). Microbiome-mediated mechanisms contributing to the environmental tolerance of reef invertebrate species. Marine Biology, 168(6), 89. https://doi.org/10.1007/s00227-021-03893-0

Marangon, E., Uthicke, S., Patel, F., Marzinelli, E. M., Bourne, D. G., Webster, N. S., & Laffy, P. W. (2023). Life-stage specificity and cross-generational climate effects on the microbiome of a tropical sea urchin (Echinodermata: Echinoidea). Molecular Ecology, 00, 1–16. https://doi.org/10.1111/mec.17124

Masasa, M., Kushmaro, A., Kramarsky-Winter, E., Shpigel, M., Barkan, R., Golberg, A., Kribus, A., Shashar, N., & Guttman, L. (2021). Mono-specific algal diets shape microbial networking in the gut of the sea urchin Tripneustes gratilla elatensis. Animal Microbiome, 3(1), 1–21. https://doi.org/10.1186/s42523-021-00140-1

Masasa, M., Kushmaro, A., Nguyen, D., Chernova, H., Shashar, N., & Guttman, L. (2023). Spatial succession underlies microbial contribution to food digestion in the gut of an algivorous sea urchin. Microbiology Spectrum, 11(3), e00514-23. https://doi.org/10.1128/spectrum.00514-23

McCracken, A. R., Christensen, B. M., Munteanu, D., Case, B. K. M., Lloyd, M., Herbert, K. P., & Pespeni, M. H. (2023). Microbial dysbiosis precedes signs of sea star wasting disease in wild populations of Pycnopodia helianthoides. Frontiers in Marine Science, 10, 1130912. https://doi.org/10.3389/fmars.2023.1130912

McKenzie, J. D., Black, K. D., Kelly, M. S., Newton, L. C., Handley, L. L., Scrimgeour, C. M., Raven, J. A., & Henderson, R. J. (2000). Comparisons of fatty acid and stable isotope ratios in symbiotic and non-symbiotic brittlestars from Oban Bay, Scotland. Journal of the Marine Biological Association of the United Kingdom, 80(2), 311–320.

Mendes, E. G., Abbud, L., & Umiji, S. (1963). Cholinergic action of homogenates of sea urchin pedicellariae. Science, 139(3553), 408–409. https://doi.org/10.1126/science.139.3553.408

Muhamad-Rizal, N. S., Neoh, H. M., Ramli, R., Periyasamy, P. R., Hanafiah, A., Abdul Samat, M. N., Tan, T. L., Wong, K. K., Nathan, S., Chieng, S., Saw, S. H., & Khor, B. Y. (2020). Advantages and limitations of 16S rRNA next-generation sequencing for pathogen identification in the diagnostic microbiology laboratory: perspectives from a middle-income country. Diagnostics, 10(10), 816. https://doi.org/10.3390/diagnostics10100816

Nelson, L., Blair, B., Murdock, C., Meade, M., Watts, S., & Lawrence, A. L. (2010). Molecular Analysis of gut microflora in captive-raised sea urchins (Lytechinus variegatus). Journal of the World Aquaculture Society, 41(5), 807–815. https://doi.org/10.1111/j.1749-7345.2010.00423.x

Nilsen, M., Pedersen, T., Nilssen, E. M., & Fredriksen, S. (2008). Trophic studies in a high-latitude fjord ecosystem—a comparison of stable isotope analyses (δ13C and δ15N) and trophic-level estimates from a mass-balance model. Canadian Journal of Fisheries and Aquatic Sciences, 65(12), 2791–2806. https://doi.org/10.1139/F08-180

North, C. A., Lovvorn, J. R., Kolts, J. M., Cooper, L. W., & Grebmeier, J. M. (2019). Discriminating trophic niches of carnivorous benthic macroinvertebrates with gut contents, stable isotopes, and fatty acids. Marine Ecology Progress Series, 631, 49–66. https://doi.org/10.3354/meps13161

O’Connell, T. C., Kneale, C. J., Tasevska, N., Kuhnle, G. G., & Bilsborough, S. A. (2012). The diet-body offset in human nitrogen isotopic values: a controlled dietary study. American Journal of Physical Anthropology, 143, 426–434. https://doi.org/10.1002/ajpa.22140

Okanishi, M., Kohtsuka, H., Wu, Q., Shinji, J., Shibata, N., Tamada, T., Nakano, T., & Minamoto, T. (2023). Development of two new sets of PCR primers for eDNA metabarcoding of brittle stars (Echinodermata, Ophiuroidea). Metabarcoding and Metagenomics, 7, e94298. https://doi.org/10.3897/mbmg.7.94298

Oren, A. (2004). Prokaryote diversity and taxonomy: current status and future challenges. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1444), 623–638.

Pagán-Jiménez, M., Ruiz-Calderón, J. F., Dominguez-Bello, M. G., & García-Arrarás, J. E. (2019). Characterization of the intestinal microbiota of the sea cucumber Holothuria glaberrima. PLoS One, 14(1), e0208011. https://doi.org/10.1371/journal.pone.0208011

Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PloS One, 5(3), e9672. https://doi.org/10.1371/journal.pone.0009672

Pascal, P. Y., Dubois, S. F., Goffette, A., & Lepoint, G. (2017). Influences of geothermal sulfur bacteria on a tropical coastal food web. Marine Ecology Progress Series, 578, 73–85. https://doi.org/10.3354/meps12237

Pawlowski, J., Bruce, K., Panksep, K., Aguirre, F. I., Amalfitano, S., Apothéloz-Perret-Gentil, L., Baussant, T., Bouchez, A., Carugati, L., Cermakova, K., Cordier, T., Corinaldesi, C., Costa, F. O., Danovaro, R., Dell’Anno, A., Duarte, S., Eisendle, U., Ferrari, B. J. D., Frontalini, F., … Fazi, S. (2022). Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods. Science of the Total Environment, 818, 151783. https://doi.org/10.1016/j.scitotenv.2021.151783

Pérez-Posada, I., Cabanillas-Terán, N., Rosas-Luis, R., Hernández-Arana, H. A., & Sánchez-Gonzalez, A. (2023). Isotopic niche shift in the sea urchins Echinometra lucunter and E. viridis after massive arrivals of Sargassum in the Mexican Caribbean. Regional Studies in Marine Science, 65, 103064. https://doi.org/10.1016/j.rsma.2023.103064

Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18(1), 293–320.

Petti, C. A., Polage, C. R., & Schreckenberger, P. (2005). The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods. Journal of Clinical Microbiology, 43(12), 6123–6125. https://doi.org/10.1128/jcm.43.12.6123-6125.2005

Phillips, D. L., & Gregg, J. W. (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136(2), 261–269. https://doi.org/10.1007/s00442-003-1218-3

Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C., Semens, B. X., & Ward, E. J. (2014). Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology, 92(10), 823–835. https://doi.org/10.1139/cjz-2014-0127

Purcell, J. E., Uye, S. I., & Lo, W. T. (2007). Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series, 350, 153–174. https://doi.org/10.3354/meps07093

Radabaugh, K. R., Hollander, D. J., & Peebles, E. B. (2013). Seasonal δ13C and δ15N isoscapes of fish populations along a continental shelf trophic gradient. Continental Shelf Research, 68, 112–122. https://doi.org/10.1016/j.csr.2013.08.010

Redd, K. S., Ling, S. D., Frusher, S. D., Jarman, S., & Johnson, C. R. (2014). Using molecular prey detection to quantify rock lobster predation on barrens-forming sea urchins. Molecular Ecology, 23(15), 3849–3869. https://doi.org/10.1111/mec.12795

Reitzel, A. M., & Miner, B. G. (2007). Reduced planktotrophy in larvae of Clypeaster rosaceus (Echinodermata, Echiniodea). Marine Biology, 151, 1525–1534. https://doi.org/10.1007/s00227-006-0591-y

Rey-Campos, M., Ríos-Castro, R., Gallardo-Escárate, C., Novoa, B., & Figueras, A. (2022). Exploring the potential of metatranscriptomics to describe microbial communities and their effects in molluscs. International Journal of Molecular Sciences, 23(24), 16029. https://doi.org/10.3390/ijms232416029

Riccioni, G., Stagioni, M., Manfredi, C., Tinti, F., Piccinetti, C., & Libralato, S. (2022). DNA metabarcoding suggests dietary niche partitioning in the Adriatic European hake. Scientific Reports, 12(1), 1343. https://doi.org/10.1038/s41598-022-05346-0

Rodríguez-Barreras, R., Cuevas, E., Cabanillas-Terán, N., & Branoff, B. (2016). Understanding trophic relationships among Caribbean sea urchins. Revista de Biología Tropical, 64(2), 837–848. https://doi.org/10.15517/rbt.v64i2.19366

Rodríguez-Barreras, R., Cuevas, E., Cabanillas-Terán, N., & Sabat, A. M. (2015). Potential omnivory in the sea urchin Diadema antillarum? Regional Studies in Marine Science, 2, 11–18. https://doi.org/10.1016/j.rsma.2015.08.005

Rodríguez-Barreras, R., Dominicci-Maura, A., Tosado-Rodríguez, E. L., & Godoy-Vitorino, F. (2023). The epibiotic microbiota of wild Caribbean sea urchin spines is species specific. Microorganisms, 11(2), 391. https://doi.org/10.3390/microorganisms11020391

Rodríguez-Barreras, R., Godoy-Vitorino, F., Præbel, K., & Wangensteen, O. S. (2020). DNA metabarcoding unveils niche overlapping and competition among Caribbean sea urchins. Regional Studies in Marine Science, 40, 101537. https://doi.org/10.1016/j.rsma.2020.101537

Rodríguez-Barreras, R., Tosado-Rodríguez, E. L., & Godoy-Vitorino, F. (2021). Trophic niches reflect compositional differences in microbiota among Caribbean sea urchins. PeerJ, 9, e12084. https://doi.org/10.7717/peerj.12084

Rossi, S., & Elias-Piera, F. (2018). Trophic ecology of three echinoderms in deep waters of the Weddell Sea (Antarctica). Marine Ecology Progress Series, 596, 143–153. https://doi.org/10.3354/meps12544

Schuh, N. W., Carrier, T. J., Schrankel, C. S., Reitzel, A. M., Heyland, A., & Rast, J. P. (2020). Bacterial exposure mediates developmental plasticity and resistance to lethal Vibrio lentus infection in purple sea urchin (Strongylocentrotus purpuratus) larvae. Frontiers in Immunology, 10, 3014. https://doi.org/10.3389/fimmu.2019.03014

Silva, B., Antunes, C., Andrade, F., Ferreira da Silva, E., Grande, J. A., & Luís, A. T. (2021). Prokaryotic and eukaryotic diversity in hydrothermal continental systems. Archives of Microbiology, 203(7), 3751–3766. https://doi.org/10.1007/s00203-021-02416-1

Sinniger, F., Pawlowski, J., Harii, S., Gooday, A. J., Yamamoto, H., Chevaldonné, P., Cedhagen, T., Carvalho, G:, & Creer, S. (2016). Worldwide analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos. Frontiers in Marine Science, 3, 92. https://doi.org/10.3389/fmars.2016.00092

Sturbois, A., Cozic, A., Schaal, G., Desroy, N., Riera, P., Le Pape, O., Le Mao, P., Ponsero, A., & Carpentier, A. (2022). Stomach content and stable isotope analyses provide complementary insights into the trophic ecology of coastal temperate bentho-demersal assemblages under environmental and anthropogenic pressures. Marine Environmental Research, 182, 105770. https://doi.org/10.1016/j.marenvres.2022.105770

Sun, Z. L., Gao, Q. F., Dong, S. L., Shin, P. K., & Wang, F. (2012). Estimates of carbon turnover rates in the sea cucumber Apostichopus japonicus (Selenka) using stable isotope analysis: the role of metabolism and growth. Marine Ecology Progress Series, 457, 101–112. https://doi.org/10.3354/meps09760

Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev, E. (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21(8), 2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x

Temara, A., De Ridder, C., Kuenen, J. G., Robertson, L. A. (1993). Sulfide-oxidizing bacteria in the burrowing echinoid, Echinocardium cordatum (Echinodermata). Marine Biology, 115, 179–185. https://doi.org/10.1007/BF00346333

Thompson, J. R., & Polz, M. F. (2006). Dynamics of Vibrio populations and their role in environmental nutrient cycling. In F. L. Thompson, B. Austin, & J. Swings (Eds.), The Biology of Vibrios (pp. 190–203). John Wiley & Sons. https://doi.org/10.1128/9781555815714.ch13

Tiwari, M., Nagoji, S. S., Kartik, T., Drishya, G., Parvathy, R. K., & Rajan, S. (2013). Oxygen isotope–salinity relationships of discrete oceanic regions from India to Antarctica vis-à-vis surface hydrological processes. Journal of Marine Systems, 113, 88–93. https://doi.org/10.1016/j.jmarsys.2013.01.001

Toju, H. (2015). High-throughput DNA barcoding for ecological network studies. Population Ecology, 57(1), 37–51. https://doi.org/10.1007/s10144-014-0472-z

Trivedi, S., Aloufi, A. A., Ansari, A. A., & Ghosh, S. K. (2016). Role of DNA barcoding in marine biodiversity assessment and conservation: an update. Saudi Journal of Biological Sciences, 23(2), 161–171. https://doi.org/10.1016/j.sjbs.2015.01.001

Vaslet, A., Phillips, D. L., France, C., Feller, I. C., & Baldwin, C. C. (2012). The relative importance of mangroves and seagrass beds as feeding areas for resident and transient fishes among different mangrove habitats in Florida and Belize: evidence from dietary and stable-isotope analyses. Journal of Experimental Marine Biology and Ecology, 434–435, 81–93. https://doi.org/10.1016/j.jembe.2012.07.024

Voronov, D., Paganos, P., Magri, M. S., Cuomo, C., Maeso, I., Gómez-Skarmeta, J. L., & Arnone, M. I. (2023). Integrative multi-omics increase resolution of the sea urchin posterior gut gene regulatory network at single cell level [Preprint]. bioRxiv. https://doi.org/10.1101/2023.05.12.540495

Walters, A., Robert, M., Cresson, P., Le Bris, H., & Kopp, D. (2021). Food web structure in relation to environmental drivers across a continental shelf ecosystem. Limnology and Oceanography, 66(6), 2563–2582. https://doi.org/10.1002/lno.11773

Wangensteen, O. S., Palacín, C., Guardiola, M., & Turon, X. (2018). DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers. PeerJ, 6, e4705. https://doi.org/10.7717/peerj.4705

Wangensteen, O. S., Turon, X., García-Cisneros, A., Recasens, M., Romero, J., & Palacín, C. (2011). A wolf in sheep’s clothing: carnivory in dominant sea urchins in the Mediterranean. Marine Ecology Progress Series, 441, 117–128. https://doi.org/10.3354/meps09359

Webster, N. S., Negri, A. P., Botté, E. S., Laffy, P. W., Flores, F., Noonan, S., Schmidt, C., & Uthicke, S. (2019). Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/srep19324

Whitman, W. B., Chuvochina, M., Hedlund, B. P., Hugenholtz, P., Konstantinidis, K. T., Murray, A. E., Palmer, M., Parks, D. H., Probst, A. J., Reysenbach, A. L., Rodriguez-R., L. M., Rosello-Mora, R., Sutcliffe, I., & Venter, S. N. (2022). Development of the SeqCode: a proposed nomenclatural code for uncultivated prokaryotes with DNA sequences as type. Systematic and Applied Microbiology, 45(5), 126305. https://doi.org/10.1016/j.syapm.2022.126305

Yatsuya, K., & Nakahara, H. (2004). Diet and stable isotope ratios of gut contents and gonad of the sea urchin Anthocidaris crassispina (A. Agassiz) in two different adjacent habitats, the Sargassum area and Corallina area. Fisheries Science, 70(2), 285–292. https://doi.org/10.1111/j.1444-2906.2003.00802.x

Zenteno, L., Crespo, E., Goodall, N., Aguilar, A., de Oliveira, L., Drago, M., Secchi, E. R., Garcia, N., & Cardona, L. (2013). Stable isotopes of oxygen reveal dispersal patterns of the South American sea lion in the southwestern Atlantic Ocean. Journal of Zoology, 291(2), 119–126. https://doi.org/10.1111/jzo.12051

Zhang, M., Zou, Y., Xiao, S., & Hou, J. (2023). Environmental DNA metabarcoding serves as a promising method for aquatic species monitoring and management: A review focused on its workflow, applications, challenges and prospects. Marine Pollution Bulletin, 194, 115430. https://doi.org/10.1016/j.marpolbul.2023.115430

Zhang, X., Nakahara, T., Murase, S., Nakata, H., Inoue, T., & Kudo, T. (2013). Physiological characterization of aerobic culturable bacteria in the intestine of the sea cucumber Apostichopus japonicus. The Journal of General and Applied Microbiology, 59(1), 1–10. https://doi.org/10.2323/jgam.59.1

Zhang, Z., Zhang, W., Hu, Z., Li, C., Shao, Y., Zhao, X., & Guo, M. (2019). Environmental factors promote pathogen-induced skin ulceration syndrome outbreak by readjusting the hindgut microbiome of Apostichopus japonicus. Aquaculture, 507, 155–163. https://doi.org/10.1016/j.aquaculture.2019.03.054

Zhao, L., Shirai, K., Tanaka, K., Milano, S., Higuchi, T., Murakami-Sugihara, N., Walliser, E. O., Yang, F., Deng, Y., & Schöne, B. R. (2020). A review of transgenerational effects of ocean acidification on marine bivalves and their implications for sclerochronology. Estuarine, Coastal and Shelf Science, 235, 106620. https://doi.org/10.1016/j.ecss.2020.106620

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Descargas

Los datos de descargas todavía no están disponibles.