Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Interacción entre la luz y la temperatura en el crecimiento de cultivos de Chlorella sorokiniana (Chlorellaceae) en condiciones de laboratorio
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

Chlorella sorokiniana; growth productivity; light intensity; temperature.
Chlorella sorokiniana; crecimiento; productividad; intensidad lumínica; temperatura.

Cómo citar

Silva Benavides, A. M., & Torzillo, G. (2025). Interacción entre la luz y la temperatura en el crecimiento de cultivos de Chlorella sorokiniana (Chlorellaceae) en condiciones de laboratorio. Revista De Biología Tropical, 73(S1), e63637. https://doi.org/10.15517/rev.biol.trop.v73iS1.63637

Resumen

Introducción: Se investigó la relación entre la luz y la temperatura sobre la productividad  de cultivos de la microalga Chlorella sorokiniana (Chlorophyceae).

Objetivo: evaluar la influencia de diferentes temperaturas e intensidades de luz sobre el crecimiento, la productividad y la clorofila a+b de Chlorella sorokiniana UTEX 1230 en condiciones de laboratorio.

Métodos: Los cultivos se expusieron a una combinación de dos irradiaciones de luz (100 y 200 µmol fotones m-2 s-1) y cinco temperaturas (20 °C, 25 °C, 30 °C, 40 °C, 45 °C ).

Resultados: A 100 µmol  fotones m-2 s-1, el crecimiento del cultivo no presentó diferencias significativas entre las temperaturas de 20 °C y 35 °C. Con esta irradiación, el peso seco máximo de la  biomasa alcanzó 3.9 g/l después de 9 días de cultivo con luz continua. Los cultivos expuestos a  una irradiación de 200 µmol  fotones m-2 s-1 mostraron mayores diferencias en su crecimiento. El  peso seco final cambió según las siguientes temperaturas, 30 °C (6.19 g/l), 25 °C (5.24 g/l), 35 °C (4.33 g/l), 40 °C (2.50 g/l),  45°C (0.00 g/l). Por consiguiente, la temperatura óptima para la productividad de los cultivos de Chlorella sorokiniana cambió de acuerdo con las intensidades de luz que fueron expuestos los cultivos. A 100 µmol fotones m-2 s-1 se presentó un crecimiento óptimo entre 20 °C y 35 °C, mientras que a 200 µmol fotones m-2 s-1 se observó una temperatura óptima para la productividad a 30 °C.

Conclusiones: Los resultados demuestran que los cultivos a 20 °C  y 100 µmol  fotones m-2 s-1 mostraron un óptimo crecimiento; sin embargo, este fue menor cuando se expuso a 200 µmol  fotones m-2 s-1. No se observó crecimiento de los cultivos a 45 °C. Por consiguiente, la temperatura a 40°C representó el límite superior para obtener una buena productividad en Chlorella sorokiniana cepa UTEX 1230, mientras que el límite inferior de temperatura cambió con la irradiación de la luz.

https://doi.org/10.15517/rev.biol.trop..v73iS1.63637
PDF (English)
HTML (English)
EPUB (English)

Citas

Becker, W. (2013). Microalgae for human and animal nutrition. In A. Richmond & Q. Hu, (Eds.), Handbook of microalgal culture: applied phycology and biotechnology (pp. 461–503). John Wiley y Sons.

Benedetti, M., Vecchi, V., Barera, S., & Dall’Osto, L. (2018). Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Factories, 17, 173. https://doi.org/10.1186/s12934-018-1019-3

Borowitzka, M. (2013). High-value products from microalgae-their development and commercialization. Journal of Applied Phycology, 25, 743–756.

Chen, W., Luo, L., Han, D., Long, F., Chi, Q., & Hu, Q. (2021). Effect of dietary supplementation with Chlorella sorokiniana meal on the growth performance, antioxidant status, and immune response of rainbow trout (Oncorhynchus mykiss). Journal of Applied Phycology, 33, 3113–3122. https://doi.org/10.1007/s10811-021-02541-w

Chun-Yen, C., Jhih-Ci, L., Yu-Han, C., Jih-Heng, C., Dillirani, N., Duu-Jong, L., & Jo-Shu, C. (2023). Optimizing heterotrophic production of Chlorella sorokiniana SU-9 proteins potentially used as a sustainable protein substitute in Aquafeed. Bioresource Technology, 370, 128538. https://doi.org/10.1016/j.biortech.2022.128538

Converti A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Borghi, M.. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing, 48, 1146–1151. https://doi.org/10.1016/j.cep.2009.03.006

Cuaresma, M., Janssen, M., Vílchez, C., & Wijffels, R. (2009). Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnology and Bioengineering, 104(2), 352–359. https://doi.org/10.1002/bit.22394

Cuaresma, M. F., Buffing, M. F., Janssen, M., Vílchez Lobato, C., & Wijffels, R. H. (2012). Performance of Chlorella sorokiniana under simulated extreme winter conditions. Journal of Applied Phycology, 24(4), 693–699. https://doi.org/10.1007/s10811-011-9687-y

De La Peña, M. R. (2007). Cell growth and nutritive value of the tropical benthic diatom, Amphora sp., at varying levels of nutrients and light intensity, and different culture locations. Journal of Applied Phycology, 19, 647–655. https://doi.org/10.1007/s10811-007-9189-0

Dorr, R., & Huss, V. A. R. (1990). Characterization of nuclear-DNA in 12 species of Chlorella (Chlorococcales, Chlorophyta) by DNA reassociation. Biosystems, 24(2), 145–155. https://doi.org/10.1016/0303-2647(90)90007-N

Eladel, H., Abomohra, A. E. F., Battah, M., Mohmmed, S., Radwan, A., & Abdelrahim, H. (2019). Evaluation of Chlorella sorokiniana isolated from local municipal wastewater for dual application in nutrient removal and biodiesel production. Bioprocess and Biosystems Engineering, 42, 425–433. https://doi.org/10.1007/s00449-018-2046-5

Grivalsky, T., Ranglova, K., Câmara Manoel, J. A., Lakatos, G. E., Lhotsky, R., & Masojidek, J. (2019). Development of thin-lyer cascades for microalgae cultivation: milestones (review). Folia Microbiologica, 64, 603–614. https://doi.org/10.1007/s12223-019-00739-7

Huesemann, M., Chavis, A., Edmundson S., Rye, D., Hobbs, S., Sun, N., & Wigmosta, M. (2018). Climate-simulated raceway pond culturing: quantifying the maximum achievable annual biomass productivity of Chlorella sorokiniana in the contiguous USA. Journal Applied Phycology, 30, 287–298. https://doi.org/10.1007/s10811-017-1256-6

Kessler, E., & Huss, V. A. R. (1992). Comparative physiology and biochemistry and taxonomic assignment of the Chlorella (Chlorophyceae) strains of the culture collection of the University of Texas at Austin. Journal of Phycology, 28(4), 550–553. https://doi.org/10.1111/j.0022-3646.1992.00550.x

Kunz, W. F. (1972). Response of the alga Chlorella sorokiniana to 60 Co gamma radiation. Nature, 236, 178–179. https://doi.org/10.1038/236178a0

Lee, J. S., Kim, D. K., Lee, J. P., Park, S. C., Koh, J. H., & Ohh, S. J. (2001). CO2 fixation by Chlorella KR-1 using flue gas and its utilization as a feedstuff for chicks. Journal of Microbiology and Biotechnology, 11(5), 772–775.

Lichtenthaler, H. (1987). Chlorophyll and carotenoids: pigments of photosynthetic membranes. Methods of Enzymology, 148, 350–382.

Liu, J., & Hu, Q. (2013). Chlorella: industrial production of cell mass and chemicals. In A. Richmond, & Q. Hu (Eds.), Handbook of microalgal culture: applied phycology and biotechnology (pp. 329–338). John Wiley y Sons.

Masojídek, J., Torzillo, G., & Koblízek, M. (2013). Photosynthesis in microalgae. In A. Richmond, & Q. Hu (Eds.), Handbook of microalgal culture: applied phycology and biotechnology (pp. 21–36). John Wiley y Sons.

Masojidek J., Vonshak, A., & Torzillo, G. (2011). Chlorophyll fluorescence applications in microalgal mass cultures. In D. J. Suggett, O. Prašil & M. A. Borowitzka (Eds.), Chlorophyll a fluorescence in aquatic sciences: methods and applications developments in applied phycology (pp. 277–292). Springer Science+Business Media B.V.

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence- a practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/jexbot/51.345.659

Moronta, R., Mora, R., & Morales, E. (2006). Response of the microalga Chlorella sorokiniana to pH, salinity and temperature in axenic and non axenic conditions. Revista de la Facultad de Agronomía, 23, 27–41.

Ras, M., Steyer, J. P., & Bernard, O. (2013). Temperature effect on microalgae: A crucial factor for outdoor production. Reviews in Environmental Science and Biotechnology, 12, 153–164. https://doi.org/10.1007/s11157-013-9310-6

Rippka, R., Deruelles, J., Waterbury, B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. Journal of General Microbiology, 111(1), 1–61. https://doi.org/10.1099/00221287-111-1-1

Seyfabadi, J., Ramezanpour, Z., & Amini-Khoeyi, Z. (2011). Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 23, 721–726. https://doi.org/10.1007/s10811-010-9569-8

Sharma, P., Srinivas Gujjala, L. K., Varjani, S., & Kumar, S. (2022). Emerging microalgae-based technologies in biorefinery and risk assessment issues: bioeconomy for sustainable development. Science of the Total Environoment, 813, 152417. https://doi.org/10.1016/j.scitotenv.2021.152417

Schubert, E. (2003). Nonmotile coccoid and colonial green algae. In J. D. Wehr, & R. Sheath (Eds.), Freshwater algae of North America: ecology and classification (2nd ed., pp. 253–307). Academic Press. https://doi.org/10.1016/B978-0-12-385876-4.00007-4

Sleger, P. M., Wijffels, R. H., van Straten, G., & van Boxtel, A. J. B. (2011). Design scenarios for flat panel photobioreactors. Applied Energy, 88(10), 3342–3353. https://doi.org/10.1016/j.apenergy.2010.12.037

Sorokin, C., & Myers, J. (1953). A high-temperature strain of Chlorella. Science, 117(3039), 330–331. https://doi.org/10.1126/science.117.3039.330

Torzillo, G., Bernardini, P., & Masojidek, J. (1998). Online monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures of Spirulina platensis (Cyanobacteria). Journal of Phycology, 34(3), 504–510. https://doi.org/10.1046/j.1529-8817.1998.340504.x

Torzillo, G., Chini Zittelli, G., Silva Benavides, A. M., Ranglova, K., & Masojidek, J. (2021). Culturing of microalgae for food applications. In T. Lafarga & G. Acién (Eds.), Cultured Microalgae for the Food Industry (pp. 1–48). Academic Press. https://doi.org/10.1016/B978-0-12-821080-2.00002-2

Torzillo, G., Sacchi, A., & Materassi, R. (1991). Temperature as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Bioresource Technology, 38(2–3), 95–100. https://doi.org/10.1016/0960-8524(91)90137-9

Torzillo, G., & Vonshak, A. (2013). Environmental stress physiology with references to mass cultures. In A. Richmond (Ed.), Handbook of microalgal mass cultures (pp. 90–113). Blackwell Science.

Torzillo G., Zittelli, G. C., Cicchi, B., Diano, M., Parente, M., Silva-Benavides, A. M., Esposito, E., & Touloupakis, E. (2022). Effect of plate distance on light conversion efficiency of a Synechocystis culture grown outdoors in a multiplate photobioreactor. Science of the Total Environment, 842, 156840. https://doi.org/10.1016/j.scitotenv.2022.156840

Tredici, M. R., Bassi, N., Prussi, M., Biondi, N., Rodolfi, L., Chini Zittelli, G., & Sampietro, G. (2015). Energy balance of algal biomass production in a 1-ha “Green Wall panel” plant: how to produce algal biomass in a closed reactor achieving a high net energy ratio. Applied Energy, 154, 1103–1111. https://doi.org/10.1016/j.apenergy.2015.01.086

Ugwu C. U., Aoyagi H., & Uchiyama H. (2007). Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica, 45(2), 309–311. https://doi.org/10.1007/s11099-007-0052-y

Vonshak, A., Torzillo, G., Masojidek, J., & Boussiba, S. (2001). Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environment, 24(10), 1113–1118. https://doi.org/10.1046/j.0016-8025.2001.00759.x

Vonshak, A., Torzillo, G., & Tomaselli, L. (1994). Use of chlorophyll fluorescence to estimate the effect of photoinhibition in outdoor cultures of Spirulina platensis. Journal of Applied Phycology, 6, 31–34. https://doi.org/10.1007/BF02185901

Yang, J., Dou, S., Liu, X., Zhu, L., Liu, K., Zhang, Y., Li, L., Liu, G., & Yang, M. (2024). Enhanced starch accumulation in Chlorella sorokiniana as sugar platform and the expression profiling of key regulatory proteins. Industrial Crops & Products, 213, 118433. https://doi.org/10.1016/j.indcrop.2024.118433

##plugins.facebook.comentarios##

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Descargas

Los datos de descargas todavía no están disponibles.