Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Relación de la herbivoría de la tortuga verde Chelonia mydas (Testudines: Cheloniidae) con la complejidad estructural de la pradera de pastos marinos del Parque Nacional Cahuita, Limón, Costa Rica
PDF (English)
HTML (English)
EPUB

Palabras clave

megaherbivore, grazing, drone, blue carbon, carbon sequestration.
megaherbívoro, herbivoría, forrajeo, dron, carbono azul, secuestro de carbono.

Cómo citar

Moya-Ramírez, J., Chacón-Chaverri, D., Naranjo-Elizondo, B., Cortés, J., & Samper-Villarreal, J. (2025). Relación de la herbivoría de la tortuga verde Chelonia mydas (Testudines: Cheloniidae) con la complejidad estructural de la pradera de pastos marinos del Parque Nacional Cahuita, Limón, Costa Rica. Revista De Biología Tropical, 73(S1), e64145. https://doi.org/10.15517/rev.biol.trop.v73iS1.64145

Resumen

Introducción: Los pastos marinos son un hábitat clave para la tortuga verde (Chelonia mydas). En el Parque Nacional Cahuita (PNC), los pastos marinos se han monitoreado desde 1999. A través del tiempo, la complejidad del dosel de la especie dominante de pasto marino (Thalassia testudinum) ha declinado. Sin embargo, la variabilidad espacial y las interacciones entre las tortugas y estas praderas en Cahuita han sido poco estudiadas.

Objetivo: Nuestro propósito fue analizar la distribución y composición de las praderas de pasto marino del PNC y cuantificar la intensidad de herbivoría de tortuga verde.

Métodos: La caracterización de los pastos marinos se realizó en 2019 y 2021. Los puntos de muestreo se distribuyeron sistemáticamente cada 200 m. Cuando estuvieron presentes los pastos marinos, se muestreó cada 50 m para mayor resolución. Se midió la profundidad del agua y la cobertura de pastos marinos por especie en cada punto. En 2019, se incluyó la densidad de haces, biomasa fotosintética y contenido de carbono en el sedimento como métricas adicionales. La densidad de tortugas se estimó por medio de video transectos aéreos. Las tasas de herbivoría se midieron con experimentos de anclaje de pastos marinos y videos subacuáticos.

Resultados: Se encontraron pastos marinos en profundidades entre 0.4–5.3 m. El contenido promedio de carbono orgánico fue 2 % que incrementó levemente con mayor biomasa de pastos. El carbonato fue 40 % y si variación asociada al pasto marino. Los pastos marinos en el PNC estuvieron dominados por T. testudinum, con presencia mínima de Syringodium filiforme, Halodule wrightii y Halophila decipiens. Entre 2019–2021, en el área muestreada ambos años, la cobertura de pasto disminuyó en un 52 %, variando de 54.7–24.7 ha. Las tortugas marinas observadas se encontraron de 20–80 cm de longitud recta del caparazón. La densidad estimada fue de 0.6 ± 0.6 tortugas/ha y la abundancia de 36–211 tortugas dentro de la laguna arrecifal. Los videos subacuáticos mostraron que la tortuga verde es el herbívoro principal de T. testudinum en la pradera.

Conclusión: La tortuga verde tiene un rol significativo en definir la complejidad del dosel y la distribución de pastos marinos en el PNC, resaltando la necesidad de monitoreo ecológico y esfuerzos de conservación integrados, particularmente ante los retos del cambio climático y presiones antropogénicas.

https://doi.org/10.15517/rev.biol.trop..v73iS1.64145
PDF (English)
HTML (English)
EPUB

Citas

Adams, M., Koh, E. J. Y., Vilas, M., Collier, C., Lambert, V., Sisson, S. Quiroz, M., McDonald-Madden, E., McKenzie, L. J., & O’Brien, K. (2020). Predicting seagrass decline due to cumulative stressors. Environmental Modelling & Software, 130, 104717. https://doi.org/10.1016/j.envsoft.2020.104717

Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193. https://doi.org/10.1890/10-1510.1

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. http://doi.org/10.18637/jss.v067.i01

Bevan, E., Whiting, S., Tucker, T., Guinea, M., Raith, A., & Douglas, R. (2018). Measuring behavioral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds. PLoS ONE, 13(3), e0194460. https://doi.org/10.1371/journal.pone.0194460

Bjorndal, K. A., Wetherall, J. A., Bolten, A. B., & Mortimer, J. A. (1999). Twenty‐six years of green turtle nesting at Tortuguero, Costa Rica: an encouraging trend. Conservation Biology, 13(1), 126–134. https://doi.org/10.1046/j.1523-1739.1999.97329.x

Camp, D. K., Cobb, S. P., & van Breedveld, J. F. (1973). Overgrazing of seagrasses by a regular urchin, Lytechinus vanegatus. BioScience, 23, 37–38.

Christianen, M. J. A., Herman, P. M., Bouma, T. J., Lamers, L. P., van Katwijk, M. M., van der Heide, T., Mumby, P. J., Silliman, B. R., Egelhard, S. L., van de Kerk, M., Kiswara, W., & van de Koppel, J. (2014). Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proceedings of the Royal Society B: Biological Sciences, 281(1777), 20132890. https://doi.org/10.1098/rspb.2013.2890.

Christianen, M. J. A., Van Katwijk, M. M., van Tussenbroek, B. I., Pagès, J. F., Ballorain, K., Kelkar, N., Arthur, R., & Alcoverro, T. (2021). A dynamic view of seagrass meadows in the wake of successful green turtle conservation. Nature Ecology & Evolution, 5(5), 553–555. https://doi.org/10.1038/s41559-021-01433-z

Cloyed, C. S., Dell, A. I., Hayes, T., Kordas, R. L., & O'Gorman, E. J. (2019). Long-term exposure to higher temperature increases the thermal sensitivity of grazer metabolism and movement. Journal of Animal Ecology, 88(6), 833–844. https://doi.org/10.1111/1365-2656.12976

Cortés, J. (2016). The Caribbean coastal and marine ecosystems. In M. Kappelle (Ed.). Costa Rican Ecosystems (pp. 591–617). University of Chicago Press.

Cortés, J., & Risk, M. J. (1985). A reef under siltation stress: Cahuita, Costa Rica. Bulletin of Marine Science, 36, 339–356.

Cortés, J., & Salas, E. (2009). Seagrasses. In I. S. Wehrtmann, & J. Cortés (Eds.), Marine Biodiversity of Costa Rica, Central America (Capítulo 4, Parte 3, pp. 119–122). Springer + Business Media. https://doi.org/10.1007/978-1-4020-8278-8_6

Cortés, J., Fonseca, A. C., Nivia-Ruiz, J., Nielsen-Muñoz, V., Samper-Villarreal, J., Salas, E., Martínez, S., & Zamora-Trejos, P. (2010). Monitoring coral reefs, seagrasses and mangroves in Costa Rica (CARICOMP). Revista de Biología Tropical, 58(Suppl. 3), 1–22. https://doi.org/10.15517/rbt.v58i0.20036

Cortés, J., Oxenford, H. A., van Tussenbroek, B. I., Jordán-Dahlgren, E., Cróquer, A., Bastidas, C., & Ogden. J. C. (2019). The CARICOMP network of Caribbean marine laboratories (1985-2007): history, key findings, and lessons learned. Frontiers in Marine Science, 5, 519. https://doi.org/10.3389/fmars.2018.00519

Creed, J. C., & Samper-Villarreal, J. (2019). Clarification of the nomenclature of the seagrass Halophila baillonii Ascherson. Aquatic Botany, 154, 42–44. https://doi.org/10.1016/j.aquabot.2019.01.002

Cribari-Neto F., & Zeileis A. (2010). Beta regression in R. Journal of Statistical Software, 34(2), 1–24. https://doi.org/10.18637/jss.v034.i02

Dawson, E. (1962). Additions to the marine flora of Costa Rica and Nicaragua. Pacific Naturalist, 3(13), 375–395.

Enríquez, S., Olivé, I., Cayabyad, N., & Hedley, J. D. (2019). Structural complexity governs seagrass acclimatization to depth with relevant consequences for meadow production, macrophyte diversity and habitat carbon storage capacity. Scientific Reports, 9, 14657. https://doi.org/10.1038/s41598-019-51248-z

Esteban, N., Mortimer, J. A., Stokes, H. J., Laloë, J. O., Unsworth, R. K., & Hays, G. C. (2020). A global review of green turtle diet: sea surface temperature as a potential driver of omnivory levels. Marine Biology, 167, 183. https://doi.org/10.1007/s00227-020-03786-8

Fonseca, M. S., & Cahalan, J. A. (1992). A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine, Coastal and Shelf Science, 35(6), 565–576. https://doi.org/10.1016/S0272-7714(05)80039-3

Fonseca, A. C., Nielsen, V. M., & Cortés, J. (2007). Monitoreo de pastos marinos en Perezoso, Cahuita, Costa Rica (sitio CARICOMP). Revista de Biología Tropical, 55(1), 55–56. https://doi.org/10.15517/rbt.v55i1.6057

Fonseca, A. C., Salas, E., & Cortés, J. (2006). Monitoreo del arrecife coralino Meager Shoal, Parque Nacional Cahuita, Costa Rica (sitio CARICOMP). Revista de Biología Tropical, 54(3), 755–763. https://doi.org/10.15517/rbt.v54i3.12774

Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., & Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5, 505–509. https://doi.org/10.1038/NGEO1477

Fourqurean J. W., Manuel, S. A., Coates, K. A., Massey, S. C., & Kenworthy, W. J. (2019). Decadal monitoring in Bermuda shows a widespread loss of seagrasses attributable to overgrazing by the green sea turtle Chelonia mydas. Estuaries and Coasts, 42, 1524–1540. https://doi.org/10.1007/s12237-019-00587-1

Gacia, E., Duarte, C. M., & Middelburg, J. J. (2002). Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica). Limnology and Oceanography, 47(1), 23–32. https://doi.org/10.4319/lo.2002.47.1.0023

Gallagher, A. J., Brownscombe, J. W., Alsudairy, N. A., Casagrande, A. B., Fu, C., Harding, L., Harris, S. D., Hammerschlag, N., Howe, W., Delgado-Huertas, A., Kattan, S., Kough, A. S., Musgrove, A., Payne, N. L., Phillips, A., Shea, B. D., Shipley, O. N., Sumaila, U. R., Hossain, M. S., … Duarte, C. M. (2022). Tiger sharks support the characterization of the world’s largest seagrass ecosystem. Nature Communications, 13(1), 6328. https://doi.org/10.1038/s41467-022-33926-1

Galmés, J., Hermida-Carrera, C., Laanisto, L., & Niinemets, Ü. (2016). A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling. Journal of Experimental Botany, 67(17), 5067–5091. https://doi.org/10.1093/jxb/erw267

Garro-Molina, D., Chaves Hidalgo, K. C., Solano León, E., & Valverde, J. P. (2023). Climatología aeronáutica: Aeropuerto Internacional de Limón [Informe técnico]. Instituto Meteorológico Nacional, Costa Rica.

Gillanders, B. M. (2006). Seagrasses, fish, and fisheries. In A. W. D. Larkum, R. J. Orth & Duarte, C. M., (Eds.), Seagrasses: Biology, Ecology and Conservation (pp 503–536). Springer. https://doi.org/10.1007/978-1-4020-2983-7_21

Gulick, A. G., Johnson, R. A., Pollock, C. G., Hillis‐Starr, Z., Bolten, A. B., & Bjorndal, K. A. (2020). Recovery of a large herbivore changes regulation of seagrass productivity in a naturally grazed Caribbean ecosystem. Ecology, 101(12), e03180. https://doi.org/10.1002/ecy.3180

Hancock, J. (2005). Estudio preliminar de la utilización del arrecife coralino del Parque Nacional Cahuita por diferentes especies de tortugas marinas Caribe Sur, Costa Rica [Informe Técnico]. Programa de Conservación de las Tortugas Marinas, Asociación ANAI, Costa Rica. http://www.latinamericanseaturtles.com/archivos/documentos/InWater2005

Hancock, J. (2006). Proyecto de monitoreo acuático de las tortugas marinas del Parque Nacional Cahuita [Informe Técnico]. Programa de Conservación de las Tortugas Marinas, Asociación ANAI, Costa Rica. http://www.latinamericanseaturtles. com/archivos/documentos/InWater2006

Hancock, J. (2007). Proyecto de monitoreo In-water de tortugas marinas del Caribe Sur, Costa Rica [Informe Técnico]. Programa de Conservación de las Tortugas Marinas, WIDECAST, Costa Rica http://www. latinamericanseaturtles. com/archivos/documentos/InWater2007

Hardin, J., & Hilbe, J. (2007). Generalized linear models and extensions (2nd Ed). Stata Press.

Hays, G. C., Glen, F., Broderick, A. C., Godley, B. J., & Metcalfe, J. D. (2002). Behavioural plasticity in a large marine herbivore: contrasting patterns of depth utilisation between two green turtle (Chelonia mydas) populations. Marine Biology, 141, 985–990. https://doi.org/10.1007/s00227-002-0885-7

Heiri, O. Z., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110. https://doi.org/10.1023/A:1008119611481

Heithaus, M. R., Alcoverro, T., Arthur, R., Burkholder, D., Coates, K. A., Christianen, M. J. A., Kelkar, N., Manuel, S. A., Wirsing, A. J., Kenworthy, W. J., & Fourqurean, J. W. (2014). Seagrasses in the age of sea turtle conservation and shark overfishing. Frontiers in Marine Science, 1, 28. https://doi.org/10.3389/fmars.2014.00028

Heck Jr, K. L., & Valentine, J. F. (2006). Plant–herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology, 330(1), 420–436. https://doi.org/10.1016/j.jembe.2005.12.044

Hensel, E., Wenclawski, S., & Layman, C. A. (2018). Using a small, consumer-grade drone to identify and count marine megafauna in shallow habitats. Latin American Journal of Aquatic Research, 46(5), 1025–1033. https://doi.org/10.3856/vol46-issue5-fulltext-15

Holmer, M. (2018). Productivity and biogeochemical cycling in seagrass ecosystems. In G. Perillo, E. Wolanski, D. Cahoon, & C. Hopkinson (Eds.), Coastal Wetlands, Second Edition: An Integrated and Ecosystem Approach (pp: 443–447). Elsevier.

Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2014). Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses [Informe técnico]. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. https://www.unep.org/resources/publication/coastal-blue-carbon-methods-assessing-carbon-stocks-and-emissions-factors

Jackson, J. B. (1997). Reefs since Columbus. Coral Reefs, 16(Suppl. 1), S23–S32. https://doi.org/10.1007/s003380050238

Johnson, R. A., Hanes, K. M., Bolten, A. B., & Bjorndal, K. A. (2020). Simulated green turtle grazing affects benthic infauna abundance and community composition but not diversity in a Thalassia testudinum seagrass meadow. Journal of Experimental Marine Biology and Ecology, 522, 151266. https://doi.org/10.1016/j.jembe.2019.151266

Kirsch, K. D., Valentine, J. F., & Heck Jr., K. L. (2002). Parrotfish grazing on turtlegrass Thalassia testudinum: evidence for the importance of seagrass consumption in food web dynamics of the Florida Keys National Marine Sanctuary. Marine Ecology Progress Series, 227, 71–85. https://doi.org/10.3354/meps227071

Kjerfve, B. (1998). CARICOMP: Caribbean Coral Reef, Seagrass and Mangrove Sites. Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura.

Kollars, N. M, Henry, A. K., Whalen, M. A., Boyer, K. E., Cusson, M., Eklöf, J. S., Hereu, C. M., Jorgensen, P., Kiriakopolos, S. L., Reynolds, P. L., Tomas, F., Turner, M. S., & Ruesink, J. L. (2017). Meta-analysis of reciprocal linkages between temperate seagrasses and waterfowl with implications for conservation. Frontiers in Plant Science, 8, 2119. https://doi.org/10.3389/fpls.2017.02119

Lanuru, M., Ambo-Rappe, R., Amri, K., & Williams, S. L. (2018). Hydrodynamics in Indo-Pacific seagrasses with focus on short canopies. Botanica Marina, 61(1), 1–8. https://doi.org/10.1515/bot-2017-0037

Lee, K., & Dunton, K. H. (1997). Effects of in situ light reduction on the maintnance, growth and partitioning of carbon resources in Thalassia testudinum Banks ex König. Journal of Experimental Marine Biology and Ecology, 210(1), 53–73. https://doi.org/10.1016/S0022-0981(96)02720-7

Leigh, S. C., Papastamatiou, Y. P., & German, D. P. (2018). Seagrass digestion by a notorious ‘carnivore’. Proceedings of the Royal Society B, 285, 2018583. https://doi.org/10.1098/rspb.2018.1583

Loría-Naranjo, M., Samper-Villarreal, J., Sandoval-Siles, M., & Cortés, J. (2018). Intra- and inter-annual variation in a seagrass meadow on the Caribbean coast of Costa Rica. Revista de Biología Tropical, 66(3), 1149–1161. https://doi.org/10.15517/rbt.v66i3.31035

Mazarrasa, I., Marbà, N., Lovelock, C. E., Serrano, O., Lavery, P. S., Fourqurean, J. W., Kennedy, H., Mateo, M. A., Krause-Jensen, D., Steven, A. D. L., & Duarte, C. M. (2015). Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences, 12(16), 4993–5003. https://doi.org/10.5194/bg-12-4993-2015

Mazarrasa, I., Samper-Villarreal, J., Serrano, O., Lavery, P. S., Lovelock, C. E., Marbà, N., Duarte, C. M., & Cortés, J. (2018). Habitat characteristics provide insights of carbon storage in seagrass meadows. Marine Pollution Bulletin, 134, 106–117. https://doi.org/10.1016/j.marpolbul.2018.01.059

Meylan, P. A., Hardy, R. F., Gray, J. A., & Meylan, A. (2022). A half-century of demographic changes in a green turtle (Chelonia mydas) foraging aggregation during an era of seagrass decline. Marine Biology, 169(6), 74. https://doi.org/10.1007/s00227-022-04056-5

Nielsen-Muñoz, V., & Cortés, J. (2008). Abundancia, biomasa y floración de Thalassia testudinum (Hydrocharitaceae) en el Caribe de Costa Rica. Revista de Biología Tropical, 56(Suppl. 4), 175–189. https://doi.org/10.15517/rbt.v56i4.27223

Ondiviela, B., Losada, I. J., Lara, J. L., Maza, M., Galván, C., Bouma, T. J., & van Belzen, J. (2014). The role of seagrasses in coastal protection in a changing climate. Coastal Engineering, 87, 158–168. https://doi.org/10.1016/j.coastaleng.2013.11.005

Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, Waycott, M., & Williams, S. L. (2006). A global crisis for seagrass ecosystems. Bioscience, 56(12), 987–996. https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2

Pausch, R. E., Hale, J. R., Kiffney, P., Sanderson, B., Azat, S., Barnas, K., Chesney, W. B., Cosentino-Manning, N., Ehinger, S., Lowry, D., & Marx, S. (2024). Review of ecological valuation and equivalency analysis methods for assessing temperate nearshore submerged aquatic vegetation. Conservation Biology, 39(1), e14380. https://doi.org/10.1111/cobi.14380

Paynter, C. K., Cortés, J., & Engels, M. (2001). Biomass, productivity and density of the seagrass Thalassia testudinum at three sites in Cahuita National Park, Costa Rica. Revista de Biología Tropical, 49(Suppl. 2), 265–272.

Potouroglou, M., Bull, J. C., Krauss, K. W., Kennedy, H. A., Fusi, M., Daffonchio, D., Mangora, M. M., Githaiga, M. N., Diele, K., & Huxham, M. (2017). Measuring the role of seagrasses in regulating sediment surface elevation. Scientific Reports, 7, 11917. https://doi.org/10.1038/s41598-017-12354-y

QGIS Development Team. (2023). QGIS Geographic Information System [Software]. QGIS Association. http://www.qgis.org

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Reisser, J., Proietti, M., Kinas, P., & Sazima, I. (2008). Photographic identification of sea turtles: method description and validation, with an estimation of tag loss. Endangered Species Research, 5, 73–82. https://doi.org/10.3354/esr00113

Restrepo, J., Webster, E. G., Ramos, I., & Valverde, R. A. (2023). Recent decline of green turtle Chelonia mydas nesting trend at Tortuguero, Costa Rica. Endangered Species Research, 51, 59–72. https://doi.org/10.3354/esr01237

Samper-Villarreal, J., Bernecker, A., & Wehrtmann, I. S. (2008). Inventory of macroalgal epiphytes on the seagrass Thalassia testudinum (Hydrocharitaceae) in Parque Nacional Cahuita, Caribbean coast of Costa Rica. Revista de Biología Tropical, 56(Suppl. 4), 163–174. https://doi.org/10.15517/rbt.v56i4.27220

Samper-Villarreal, J., Loría-Naranjo, M., van Tussenbroek, B. I., & Cortés, J. (2020). Synchronized sexual reproduction of the seagrass Syringodium filiforme (Cymodoceaceae) in a tropical reef lagoon on the Caribbean coast of Costa Rica. Revista Ciencias Marinas y Costeras, 12(1), 49–68. https://doi.org/10.15359/revmar.12-1.3

Samper-Villarreal J., Moya-Ramírez, J., & Cortés, J. (2022). Megaherbivore exclusion led to more complex seagrass canopies and increased biomass and sediment Corg pools in a tropical meadow. Frontier in Marine Science, 9, 945783. https://doi.org/10.3389/fmars.2022.945783

Samper-Villarreal, J., Sagot-Valverde, J. G., Gómez-Ramírez, E. H., & Cortés, J. (2021). Water quality as a potential factor influencing seagrass change over time at Cahuita National Park, Costa Rica. Caribbean Journal of Science, 51(1), 72–85. https://doi.org/10.18475/cjos.v51i1.a9

Samper-Villarreal, J., van Tussenbroek, B. I., & Cortés, J. (2018). Seagrasses of Costa Rica: from the mighty Caribbean to the dynamic meadows of the Eastern Tropical Pacific. Revista de Biología Tropical, 66(Suppl. 1), S53–S65. https://doi.org/10.15517/rbt.v66i1.33260

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. https://doi.org/10.1038/nmeth.2089

Schofield, G., Esteban, N., Katselidis, K. A., & Hays, G. C. (2019). Drones for research on sea turtles and other marine vertebrates–A review. Biological Conservation, 238, 108214. https://doi.org/10.1016/j.biocon.2019.108214

Scott, A. L., York, P. H., Duncan, C., Macreadie, P. I., Connolly, R. M., Ellis, M. T., Jarvis, J. C., Jinks, K. I., Marsh, H., & Rasheed, M. A. (2018). The role of herbivory in structuring tropical seagrass ecosystem service delivery. Frontiers in Plant Science, 9, 127. https://doi.org/10.3389/fpls.2018.00127

Seminoff, J. A., Allen, C. D., Balazs, G. H., Dutton, P. H., Eguchi, T., Haas, H. L., Hargrove, S. A., Jensen, M. P., Klemm, D. L., Lauritsen, A. M., MacPherson, S. L., Opay, P., Possardt, E. E., Pultz, S. L., Seney, E. E., Van Houtan, K. S., & Waples, R. S. (2015). Status review of the green turtle (Chelonia mydas) under the endangered species act [Informe técnico]. NOAA Technical Memorandum. https://repository.library.noaa.gov/view/noaa/4922

Short, F., Carruthers, T., van Tussenbroek, B., & Zieman, J. (2010a). Halophila baillonii [Web page]. The IUCN Red List of Threatened Species 2010. Version 3.1. http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T173382A7004500.en

Short, F. T., Carruthers, T. J. R., Waycott, M., Kendrick, G. A., Fourqurean, J. W., Callabine, A., Kenworthy, W. J., & Dennison W. C. (2010b). Ruppia maritima [Web page]. The IUCN Red List of Threatened Species 2010. https://doi.org/10.2305/IUCN.UK.2010-3.RLTS.T164508A5897605.en

Unsworth, R. K. F., Taylor, J. D., Powell, A., Bell, J. J., & Smith, D. J. (2007). The contribution of scarid herbivory to seagrass ecosystem dynamics in the Indo-Pacific. Estuarine Coastal and Shelf Science, 74(1–2), 53–62. https://doi.org/10.1016/j.ecss.2007.04.001

Valentine, J. F., & Duffy, J. E. (2006). The central role of grazing in seagrass ecology. In: A. W. D. Larkum, R. J. Orth & Duarte, C. M., (Eds.), Seagrasses: Biology, Ecology and Conservation (pp: 463–501). Springer. https://doi.org/10.1007/978-1-4020-2983-7_20

van Tussenbroek, B. I., Cortés, J., Collin, R., Fonseca, A. C., Gayle, P. M. H., Guzman, H. M., Jacome, G. E., Juman, R., Koltes, K. H., Oxenford, H. A., Rodríguez-Ramírez, A., Samper-Villarreal, J, Smith, S. R., Tschirky, J. J., & Weil, E. (2014). Caribbean-wide, long-term study of seagrass beds reveals local variations, shifts in community structure and occasional collapse. PloS ONE, 9(5), e90600. https://doi.org/10.1371/journal.pone.0090600

van Tussenbroek, B. I., & González Morales, L. F. (2017). Grazing by green sea-turtles does not affect reproductive fitness in Thalassia testudinum. Aquatic Botany, 141, 10–16. https://doi.org/10.1016/j.aquabot.2017.05.003

van Tussenbroek, B. I., Santos, M. B., Wong, J. G. R., Van Dijk, K., & Waycott, M. (2010). A guide to the tropical seagrasses of the Western Atlantic. Universidad Nacional Autónoma de México.

van Tussenbroek, B. I., Vonk, J. A., Stapel, J., Erftemeijer, P. L. A., Middelburg, J. J., & Zieman, J. C. (2006). The biology of Thalassia: paradigms and recent advances in research. In: A. W. D. Larkum, R. J. Orth, & Duarte, C. M. (Eds.), Seagrasses: Biology, Ecology and Conservation (pp: 409–439). Springer. https://doi.org/10.1007/978-1-4020-2983-7_18

Vieira, V. M., Lopes, I. E., & Creed, J. C. (2018). The biomass–density relationship in seagrasses and its use as an ecological indicator. BMC Ecology, 18(44), 1–16. https://doi.org/10.1186/s12898-018-0200-1

Ward, L. G., Kemp, M., & Boyton, W. (1984). The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Marine Geology, 59(1–4), 85–103. https://doi.org/10.1016/0025-3227(84)90089-6

Ward-Paige, C. A., Mora, C., Lotze, H. K., Pattengill-Semmens, C., McClenachan, L., Arias-Castro, E., & Myers, R. A. (2010). Large-scale absence of sharks on reefs in the greater-Caribbean: a footprint of human pressures. PloS ONE, 5(8), e11968. https://doi.org/10.1371/journal.pone.0011968

Waycott, M., Duarte, C. M., Carruthers, T. J., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck Jr, K. L., Hughes, A. R., & Kendrick, G. A. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, 106(30), 12377–12381. https://doi.org/10.1073/pnas.0905620106

Weinberg, S. (1978). The minimal area problem in invertebrate communities of Mediterranean rocky substrata. Marine Biology, 49, 33–40. https://doi.org/10.1007/BF00390728

##plugins.facebook.comentarios##

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Descargas

Los datos de descargas todavía no están disponibles.