Physicochemical and sensory characteristics of bovine and goat kefir with strawberry flavor

Authors

DOI:

https://doi.org/10.15517/5gm2vj84

Keywords:

Fermented dairy products, bovine milk, goat milk, sensory analysis, formulation, quality control

Abstract

This study, conducted in San Pedro, Montes de Oca, Costa Rica, aimed to evaluate the impact of different proportions of goat and bovine milk on the characteristics of strawberry kefir through physicochemical, microbiological, and sensory analyses. Five milk combinations were tested to assess their influence on the final product. Measurements were taken on days 1 and 7 to determine the effect of the different proportions over storage time. Variables such as pH, total acidity, viscosity, syneresis percentage, alcohol content, color, thermotolerant coliforms (TC), and yeasts were analyzed. A sensory test was carried out with 104 participants who evaluated the five proposed formulations and a commercial kefir sample. The highest alcohol content, viscosity, and color values were obtained in the kefir made exclusively with bovine milk, while the greatest syneresis occurred in the kefir produced only with goat milk. Yeast counts remained within acceptable limits in all formulations, and TC presence was minimal. Interactions between formulations and storage time were observed for pH, titratable acidity, and viscosity. The sensory evaluation showed that the commercial kefir received the lowest acceptance. Among the proposed formulations, the kefir made with 100% goat milk was the least preferred, while the formulation containing 25% goat milk had the highest acceptance. Specifically, the strawberry-flavored kefir with 25% goat milk was selected due to its superior sensory characteristics and showed the second-best physicochemical performance, surpassed only by the bovine milk formulation. Therefore, the inclusion of goat milk allows the production of kefir with acceptable physicochemical and sensory properties.

Downloads

Download data is not yet available.

Author Biographies

  • Alejandro Chacón-Villalobos, Escuela de Zootecnia. Alfredo Volio Mata Experimental Station. University of Costa Rica.

    Researcher and lecturer at the School of Animal Science in San Pedro, San José, and at the Alfredo Volio Mata Experimental Station in La Unión, Cartago, both belonging to the University of Costa Rica.

  • Leandro José Campos-Trigueros, Faculty of Agri-Food Sciences, School of Food Technology. University of Costa Rica

    Member of the Faculty of Agri-Food Sciences, School of Food Technology. University of Costa Rica. San José, Costa Rica.

  • María Lourdes Pineda-Castro, Faculty of Agri-Food Sciences, School of Food Technology. University of Costa Rica

    Member of the Faculty of Agri-Food Sciences, School of Food Technology. University of Costa Rica. San José, Costa Rica.

References

Abou-Ayana, I. y Saber, W. (2016). Optimization of milk type and physical factors for reduction of alcohol content in kefir. Journal of Food and Dairy Sciences, 7 (3), 161-166. doi: 10.21608/jfds.2016.42959

Ajam, F. y Koohsari, H. (2021). The effect of some fermentation conditions on the production of kefiran by kefir grains in fermented milk. Research and Innovation in Food Science and Technology, 9 (4), 399-410. doi: 10.22101/JRIFST.2021.259857.1205

Alvarado, P. (2018). Desarrollo de un bioproceso para la obtención de una bebida funcional a partir de lactosuero en polvo y gránulos de kéfir. Tesis Lic., Universidad Técnica del Norte, Ibarra, Imbabura, Ecuador. p. 76.

Álvarez-Figueroa, M.L., Pineda-Castro, M.L., Chacón-Villalobos, A., Cubero-Castillo, E. (2022). Características fisicoquímicas y sensoriales de leches caprina y bovina enteras, descremadas y deslactosadas. Agronomía Mesoamericana, 33(2), 47039. doi: 10.15517/am.v33i2.47039

Alves, E., Ntungwe, E., Gregorio, J., Rodrigues, L., Pereira, C., Caleja, C., Pereira, E., Barros, L., y Aguilar, M. (2021). Characterization of kefir produced in household conditions: Physicochemical and nutritional profile, and storage stability. Foods, 10 (5), 1057. doi: 10.3390/foods10051057

AOAC International (Association of Official Analytical Chemists International). (2023). Official Methods of Analysis. 22nd Edition, The Association of Official Analytical Chemists, Gaithersburg, MD, USA.

Arrazola, G., Herazo, I. y Alvis, A. (2014). Obtención y evaluación de la estabilidad de antocianinas de berenjena (Solanum melongena L.) en bebidas. Información Tecnológica, 25 (3), 43-52. doi: 10.4067/S0718-07642014000300007

Bakhshandeh, T., Pouramahd, R., Sharifan, A., y Moghimi, A. (2011). Evaluation of flavor and aroma compounds content in kefir. Journal of Food Biosciences and Technology, 1, 11-18.

Baniasadi, M., Azizkhani, M., Saris, P. E. J., y Tooryan, F. (2021). Comparative antioxidant potential of kefir and yogurt of bovine and non-bovine origins. Journal of Food Science and Technology, 59 (4), 1307-1316. doi: 10.1007/s13197-021-05139-9

Baquero, L. (2020). Evaluación del efecto de distintas proporciones de leche de vaca y cabra sobre las características físicas, químicas y sensoriales de leches saborizadas. Tesis Lic. Universidad de Costa Rica, San José, Costa Rica. p. 79.

Bidot, A. (2017). Composición, cualidades y beneficios de la leche de cabra: revisión bibliográfica. Revista Producción Animal, 29 (2), 32-41.

Cabrera-Beltrán, L.J., Guerrero M. J., Enriquez J. M., Lescano L. G. y López, S. G. (2022). Sustitución parcial de la leche bovina por caprina en la elaboración de helados cremosos. Ciencia Latina Revista Científica Multidisciplinar, 6 (5), 4033-4045. doi: 10.37811/cl_rcm.v6i5.3372

Camacho, A., Giles, M., Ortegón, A., Palao, M., Serrano, B., y Velázquez, O. (2009). Técnicas para el análisis microbiológico de alimentos. 2a ed. Facultad de Química, UNAM. México.

Chacón-Villalobos, A. y Mora-Valverde, D. (2017). Caracterización sectorial de la caprinocultura en Costa Rica. Nutrición Animal Tropical, 11 (2), 23-60. doi: 10.15517/nat.v11i2.31653

Chacón–Villalobos, A., Pineda-Castro, M. L. y Jiménez-Goebel, C. (2016). Características fisicoquímicas y sensoriales de helados de leche caprina y bovina con grasa vegetal. Agronomía Mesoamericana, 27 (1), 19-36. doi: 10.15517/am.v27i1.21875

Chacón-Villalobos, A., Pineda-Castro, M. L., y Méndez-Rojas, S. (2013). Efecto de la proporción de leche bovina y caprina en las características del dulce de leche. Agronomía Mesoamericana, 24 (1), 149–167. doi: 10.15517/am.v24i1.9792

Chadha, M., Mishra, K., Kumar, S., & Shukla, R. (2025). Chemical and rheological characterization of functional kefir supplemented with basil seed mucilage extract. Scope, 15(3), 287-301. doi:10.3329/scope.v15i3.83861

Costa de Almeida, T., Guiomar de Almeida Brasiel, P. y Potente Dutra Luquetti, S.C. (2022). Kefir de leite mantém a contagem microbiológica com atividade probiótica ao longo do cultivo com predominância dos gêneros lactococcus e aspergillus. Revista do Instituto de Laticínios Cândido Tostes, 77 (2), 80-91. doi: 10.14295/2238-6416.v77i2.887

Darnay, L., Toth, A., Csehi, B., Szepessy, A., Horváth, M., Pásztor-Huszár, K. y Laczay, P. (2021). The effect of microbial transglutaminase on the viscosity and protein network of kefir made from cow, goat, or donkey milk. Fermentation, 7 (4), 214. doi: 10.3390/fermentation7040214

Deeth, H. C. (2006). Lipoprotein lipase and lipolysis in milk. International Dairy Journal, 16 (6), 555-562. doi: 10.1016/j.idairyj.2005.08.011

Dimitrellou, D., Salamoura, C., Kontogianni, A., Katsipi, D., Kandylis, P., Zakynthinos, G. y Varzakas, T. (2019). Effect of milk type on the microbiological, physicochemical and sensory characteristics of probiotic fermented milk. Microorganisms, 7 (9), 274. doi: 10.3390/microorganisms7090274

Dos Santos, D.C., Filho, J., Santana, A., De Freitas, B., Silva, F., Pereira, K. y Buranelo, M. (2019). Optimization of soymilk fermentation with kefir and the addition of inulin: Physicochemical, sensory and technological characteristics. Food Science and Technology, 104, 30-37.doi: 10.1016/j.lwt.2019.01.030

Flores-Aguilar, E. y Flores-Rivera, E. (2018). Estabilidad de Antocianinas, Fenoles totales y Capacidad Antioxidante de Bebidas de Maíz Morado (Zea mays L.) y Uña de Gato (Uncaria tomentosa sp). Información tecnológica, 29 (2), 175-184. doi:10.4067/S0718-07642018000200175

Flores-Ayala, K.M., Figueroa González, S.A., Mendoza Lemus, J.I., Rodríguez Melgar, M.G. (2024). Análisis de Clúster (Conglomerados). Trabajo Investig., Universidad de El Salvador. https://rpubs.com/Hanlezae/1135890

Giraldo, M. (2023). Características físico-químicas y organolépticas del kéfir de leche de cabra y lactosuero. Tesis Preg., Universitat Politècnica de València, València, Valencia, España.

Gonda, M., Garmendia, G., Rufo, C., Peláez, A., Wisnieski, M., Droby, S., y Vero, S. (2019). Biocontrol of Aspergillus flavus in ensiled sorghum by water kefir microorganisms. Microorganisms, 7 (8), 253. doi: 10.3390/microorganisms7080253

Harmankaya, S., Gülbaz, G. y Kamber, U. (2019). Microbiological, Chemical and Sensory Characteristics of Kefir Prepared with Various Fruit Additives. Van Veterinary Journal, 30 (1), 13-18.

Hatmal, M., Nuirat, A., Zihlif, M. y Taha, M. (2018). Exploring the influence of culture conditions on kefir’s anticancer properties. Journal of Dairy Science, 101 (5), 3771–3777. doi: 10.3168/jds.2017-13539

Januário, J. G. B., Lima, T. M., Portella, D. A. C., Januário, C. B., Klososki, S. J. y Pimentel, T. C. (2016). Desenvolvimento de bebidas kefir: padronização dos parâmetros de processo. Brazilian Journal of Food Research, 7 (2), 80-95. doi: 10.14685/rebrapa.v7n2.3630

Kim, D., Jeong, D., Kim, H., y Seo, K. (2019). Modern perspectives on the health benefits of kefir in next generation sequencing era: Improvement of the host gut microbiota. Critical Reviews in Food Science and Nutrition, 59 (11), 1782-1793. doi: 10.1080/10408398.2018.1428168

Lim, J. (2011). Hedonic scaling: A review of methods and theory. Food quality and preference, 22 (8), 733-747.doi: 10.1016/j.foodqual.2011.05.008

Mega, O., Putra Jahidin, J., Binti Sulaiman, N., Yusuf, M., Arifin. M. y Arief, I. (2020). Total count of lactic acid bacteria in goats and cows milk yoghurt using starter S. thermophilus RRAM-01, L. bulgaricus RRAM-01 and L. acidophilus IIA-2B4. Buletin Peternakan, 44 (1), 50-56. doi: 10.21059/buletinpeternak.v44i1.42311

Mercan, E., Sert, D. y Akin, N. (2018). Effect of high-pressure homogenization on viscosity, particle size and microbiological characteristics of skim and whole milk concentrates. International Dairy Journal, 87, 93-99. doi: 10.1016/j.idairyj.2018.07.017

Miller, B. y Lu, C. (2019). Current status of global dairy goat production: an overview. Asian- Australasian Journal of Animal Science, 32 (8), 1219-1232. doi: 10.5713/ajas.19.0253

Mora, O. y Shimada, A. (2020). Causas del color amarillo de la grasa de canales bovinos finalizados en pastoreo. Veterinaria México, 7 (3), 1-15. doi: 10.22201/fmvz.24486760e.2020.3.926.

Neerven, J. y Savelkoul, H. (2019). The two faces of cow’s milk and allergy: induction of cow’s milk allergy vs. prevention of asthma. Nutrients, 11, 1945, in Neerven, J. y H. Savelkoul (Eds.) Cow's Milk and Allergy Special Issue. Nutrients. Editorial MBPI, Basel, Suiza. doi:10.3390/nu11081945

Nielsen, S. (2014). Food Analysis. Editorial Springer, Cham, Switzerland. doi: 10.1007/978-3-031-50643-7

OECD-FAO (Organización para la Cooperación y el Desarrollo Económico-Organización de las Naciones Unidas para la Alimentación y la Agricultura). (2022). Lácteos y sus productos. OCDE-FAO Perspectivas Agrícolas 2021-2030. https://www.oecd- ilibrary.org/sites/02b800e9es/index.html?itemId=/content/component/02b800e9- es#section-d1e26248 (Consultado 11 set, 2024)

Parrales, L. (2014). Elaboración de yogurt batido a base de leche de cabra criolla (Capra hircus), endulzado con Stevia (Stevia rebaudiana) como alternativa para el consumo. Tesis Lic. Universidad Católica de Santiago de Guayaquil, Guayaquil, Guayas, Ecuador.

Plaza, C. (2019). Proceso de elaboración del kéfir y su aplicación gastronómica. Tesis Preg. Universidad de Cuenca, Cuenca, Ecuador

Pretell, A.M. y Urraca, E.M. (2012). Características fisicoquímicas y aceptabilidad general de un kéfir de leche de vaca (Bos taurus) y de cabra (Capra hircus). Pueblo Continente. 23 (1), 145-154.

Putri, Y. D., Setiani, N. A. y Warya, S. (2020). The effect of temperature, incubation and storage time on lactic acid content, pH, and viscosity of goat milk kefir. Current Research on Biosciences and Biotechnology, 2 (1), 101-104. doi: 10.5614/crbb.2020.2.1/hpmq5042

Rafiq, L., Zahoor, T., Sagheer, A., Khalid, N., Rahman, U., y Liaqat, A. (2020). Augmenting yogurt quality attributes through hydrocolloidal gums. Asian-Australasian Journal of Animal Sciences, 33 (2), 323-331. doi: 10.5713/ajas.18.0218

Ray, P. R., Chatterjee, K., Chakraborty, C. y Ghatak, P. K. (2013). Lipolysis of milk: A review. International Journal of Agricultural Sciences and Veterinary Medicine, 1 (1), 58-74.

Rodríguez, A.I y Del Campo, J.M. (2014). Análisis microbiológico del yogur kéfir. https://investigacion.uaa.mx/seminario/memoria_abstracts/15seminario/ponencias/m_biom/ADAN_ISRAEL_RODRIGUEZ_HERNANDEZ.pdf (Consultado 12 set, 2024)

Rojas, W. (2005). Características del yogurt batido de fresa derivadas de diferentes proporciones de leche de vaca y cabra. Tesis Lic. Universidad de Costa Rica. San José, Costa Rica.

Rojas-Castro, W. N., Chacón-Villalobos, A. y Pineda-Castro, M. L. (2007). Características del yogurt batido de fresa derivadas de diferentes proporciones de leche de vaca y cabra. Agronomía Mesoamericana, 18 (2), 221–237. doi:10.15517/AM.V18I2.5052

Rosa, D. D., Dias, M. M., Grześkowiak, Ł. M., Reis, S. A., Conceição, L. L., do Carmo, M. (2017). Milk kefir: nutritional, microbiological and health benefits. Nutrition Research Reviews, 30 (1), 82-96. doi: 10.1017/S0954422416000275

RTCA (Reglamento Técnico Centro Americano). (2017). Alimentos. Criterios Microbiológicos para la Inocuidad de los Alimentos. Reglamento Técnico Centroamericano. RTCA 67.04.50:17. 1ra Revisión.

SACCO. (2010). Lyofast MT 036 LX, Technical Data Sheet. Sacco System. https://www.greenlivingaustralia.com.au/assets/files/pdf/media/pdf/specs/MT036LV_kefir_culture-GLA.pdf (Consultado 12 set, 2024)

Salfinger. I y Tortorello, L. (2015). Compendium of methods for microbiological examination of foods. APHA Press, Washington D.C. , Estados Unidos de América. doi: 10.2105/MBEF.0222

Sanmiguel, J., y Villa, D. (2021). Caracterización fisicoquímica y sensorial de un producto esferificado tipo topping para el sector de helados y refrescos. Tesis Preg., Universidad De Los Andes. http://hdl.handle.net/1992/55358

Sarica, E., y Coşkun, H. (2020). Assessment of durability and characteristics of changes in kefir made from cow's and goat's milk. Italian Journal of Food Science, 32 (3), 498-516. doi: 10.14674/IJFS-1803

Sarica, E. y Coşkun, H. (2021). Effect of frozen storage on some characteristics of kefir samples made from cow’s and goat’s milk. Food Science and Technology International, 28 (2), 157-168. doi: 10.1177/10820132211003710

SAS (Statistical Analysis System) Institute Inc. 2009. JMP® 8 Introductory Guide, Second Edition. Cary, NC: SAS Institute Inc.

Setiawati, A., Sari, I. y Hasyat, N. (2021). Effect of temperature and time storage towards alcohol level in cow milk kefir. IOP Conference Series: Earth and Environmental Science. 733 (1), 012108. doi: 10.1088/1755-1315/733/1/012108

SCIJ (Sistema Costarricense de Información Jurídica). (2008). Reglamento Técnico RTCR 414:2008 Yogurt para Consumo Directo. Sistema Costarricense de Información Jurídica. MEIC-MAG. http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx? param1=NRTC&nValor1=1&nValor2=65017&nValor3=95230&strTipM=TC (Consultado 12 set, 2024)

Strzałkowska, N., Jóźwik, A., Bagnicka, E., Krzyżewski, J., Horbańczuk, K., Pyzel, B., y Horbańczuk, J. O. (2010). The concentration of free fatty acids in goat milk as related to the stage of lactation, age and somatic cell count. Animal Science Papers and Reports, 28 (4), 389-395.

Temiz, H. y Dağyıldız, K. (2017). Effects of microbial transglutaminase on physicochemical, microbial and sensorial properties of kefir produced by using mixture cow’s and soymilk. Korean Journal for Food Science of Animal Resources, 37 (4), 606–616. doi: 10.5851/kosfa.2017.37.4.606

Trujillo, E. (2019). Diseño de un proceso industrial para la elaboración de kéfir en la microempresa de lácteos Camilita. Tesis Preg. Escuela Politécnica Superior de Chimborazo, Riobamba, Chimborazo, Ecuador

Vidal, N.P., Manful, C.F., Pham, T.H., Stewart, P., Keough, D., y Thomas, R.H. (2020). The use of XLSTAT in conducting principal component analysis (PCA) when evaluating the relationships between sensory and quality attributes in grilled foods. MethodsX, 7, 100835. doi: 10.1016/j.mex.2020.100835

Wong, C. L. y Escalante, L. L. (2014). QM 110 Lab-7 Identificación de compuestos orgánicos. Alcoholes. https://quimicaorganicactiva.blogspot.com/2014/02/lab-7-identificacion-de-compuestos.html (Consultado 12 set, 2024)

Yilmaz-Ersan, L., Ozcan, T., Akpinar-Bayizit, A. y Sahin, S. (2018). Comparison of antioxidant capacity of cow and ewe milk kefirs. Journal of Dairy Science, 101 (5), 3788–3798. doi: 10.3168/jds.2017-13871

Zapata, L., Castagnini, J., Quinteros, C., Carlier, E., Jimenez, M. y Cabrera, C. (2016). Estabilidad de antocianinas durante el almacenamiento de jugos de arándanos. Vitae Revista de la Facultad de Ciencias Farmacéuticas y Alimentarias, 23 (3), 173-183. doi: 10.17533/udea.vitae.v23n3a03

Zhimo, V.Y., Biasi, A., Kumar, A., Feygenberg, O., Salim, S., Vero, S., Wisniewski, M. y Droby, S. (2020). Yeast and bacteria consortia from kefir grains are effective biocontrol agents of postharvest diseases of fruits. Microorganisms, 8 (3), 428. doi: 10.3390/microorganisms8030428

Published

2025-12-09