Actualidades en Psicología ISSN Impreso: 0258-6444 ISSN electrónico: 2215-3535

Increased Prefrontal-Parietal EEG Gamma Band Correlation during Motor Imagery in Expert Video Game Players


motor imagery
FPS videogames
EEG correlation
prefrontal and parietal cortex
gamma activity

How to Cite

Almanza Sepúlveda, M. L., Llamas Alonso, J., Guevara, M. A., & Hernández González, M. (2014). Increased Prefrontal-Parietal EEG Gamma Band Correlation during Motor Imagery in Expert Video Game Players. Actualidades En Psicología, 28(117), 27–36.


Abstract. The aim of this study was to characterize the prefrontal-parietal EEG correlation in experienced video game players (VGPs) in relation to individuals with little or no video game experience (NVGPs) during a motor imagery condition for an action-type video game. The participants in both groups watched a first-person shooter (FPS) gameplay from Halo Reach during five minutes. None of the participants was notified as to the content of the video before watching it. Only the VGPs showed an increased right intrahemispheric prefrontal-parietal correlation (F4-P4) in the gamma band (31-50 Hz) during the observation of the gameplay. These data provide novel information on the participation of the gamma band during motor imagery for an action-type video game. It is probable that this higher degree of coupling between the prefrontal and parietal
cortices could represent a characteristic pattern of brain functionality in VGPs as they make motor representations.


Basak, C., Voss, M. W., Erickson, K. I., Boot, W. R. & Kramer, A. F. (2011). Regional differences in brain volume predict the acquisition of skill in a complex real-time strategy videogame. Brain and Cognition, 76, 407–414.

Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta psychologica, 129(3), 387-398.

Brière, M. È., Forest, G., Chouinard, S., & Godbout, R. (2003). Evening and morning EEG differences between young men and women adults. Brain and Cognition, 53(2), 145-148.

Castel, A. D., Pratt, J., & Drummond, E. (2005). The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta psychologica, 119(2), 217-230.

Colzato, L. S., van den Wildenberg, W. P., Zmigrod, S., & Hommel, B. (2013). Action video gaming and cognitive control: playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychological research, 77, 234-239.

Decety, J., & Grèzes, J. (1999). Neural mechanisms subserving the perception of human actions. Trends in cognitive sciences, 3(5), 172-178.

Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods, R., Mazziotta, J. C., & Fazio, F. (1994). Mapping motor representations with positron emission tomography. Nature, 371(13), 600-603.

Desmedt, J. E., & Tomberg, C. (1994). Transient phaselocking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neuroscience letters, 168(1), 126-129.

D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transaction Royal Society, 362, 761-772.

Esparza, D. Y., & Larue, J. (2008). Interacciones cognitivo-motoras: el papel de la representación motora. Revista de Neurología, 46(219), 24.

Fabbri-Destro, M., & Rizzolatti, G. (2008). Mirror neurons and mirror systems in monkeys and humans. Physiology, 23(3), 171-179.

Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological science, 18(10), 850-855.

Flores-Gutiérrez, E. O., Díaz, J. L., Barrios, F. A., Guevara, M. Á., del Río-Portilla, Y., Corsi-Cabrera, M., & del Flores-Gutiérrez, E. O. (2009). Differential alpha coherence hemispheric patterns in men and women during pleasant and unpleasant musical emotions. International Journal of Psychophysiology, 71(1), 43-49.

Friedman-Hill, S., Maldonado, P. E., & Gray, C. M. (2000). Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations. Cerebral Cortex, 10(11), 1105-1116.

Fuster, J. M. (1997). The prefrontal Cortex, Anatomy, Physiology, and Neuropsychology of the frontal Lobe.United States of America: Ed. Raven Press.

Fuster, J. M., Bodner, M., & Kroger, J. K. (2000). Crossmodal and cross-temporal association in neurons of frontal cortex. Nature, 405(6784), 347-351.

Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534-537.

Green, C. S., & Bavelier, D. (2006). Effect of action video games on the spatial distribution of visuospatial attention. Journal of experimental psychology: Human perception and performance, 32(6), 1465.

Guevara, M. A., Ramos, J., Hernández-González, M., Madera-Carrillo, H., & Corsi-Cabrera, M. (2000). CAPTUSEN: un sistema para la adquisición computarizada del EEG y los potenciales relacionados a eventos. Revista Mexicana de Psicología, 17, 77-88.

Guevara, M. A., & Hernández-González, M. (2009). EEGmagic: programa para analizar señales electroencefalográficas. Revista Mexicana de Ingeniería Biomédica, 30, 41–53.

Guevara, M. A., Hernández-González, M., & Sanz- Martin, A. (2010). CHECASEN: Programa para revisar señales EEG fuera de línea. Revista Mexicana de Ingeniería Biomédica, XXXI, 135–141.

Guevara, M. A., Hernández-González, M., Sanz-Martin, A., & Amezcua, C. (2011). EEGcorco: a computer program to simultaneously calculate and statistically analyze EEG coherence and correlation. Journal of Biomedical Science & Engineering, 4(12), 774-787.

Goldman-Rakic, P. S. (1990). Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates [Review]. Progress in Brain Research, 85, 325-36.

Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477-485.

Juárez, J., & Corsi-Cabrera, M. (1995). Sex differences in interhemispheric correlation and spectral power of EEG activity. Brain research bulletin, 38(2), 149-151.

Haggard, P. (2005). Conscious intention and motor cognition. Trends in cognitive sciences, 9(6), 290-295.

Herculano-Houzel, S., Munk, M. H., Neuenschwander, S., & Singer, W. (1999). Precisely synchronized oscillatory firing patterns require electroencephalographic activation. The Journal of neuroscience, 19(10), 3992-4010.

Howard, M. W., Rizzuto, D. S., Caplan, J. B., Madsen, J. R., Lisman, J., Aschenbrenner-Scheibe, R., Schulze- Bonhage, A., & Kahana, M. J. (2003). Gamma oscillations correlate with working memory load in humans. Cerebral Cortex, 13(12), 1369-1374.

Inoue, M., Mikami, A., Ando, I., & Tsukada, H. (2004). Functional brain mapping of the macaque related to spatial working memory as revealed by PET. Cerebral Cortex, 14(1), 106-119.

Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C., & Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of physical medicine and rehabilitation, 82(8), 1133-1141.

Jasper, H. H. (1958). The ten-twenty electrode system of the international federation. Electroencephalography and clinical neurophysiology, 10, 371-375.

Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.). (2000). Principles of neural science (Vol. 4, pp. 1227-1246). New York: McGraw-Hill.

Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324.

Lüchinger, R., Michels, L., Martin, E., & Brandeis, D. (2011). EEG–BOLD correlations during (post) adolescent brain maturation. Neuroimage, 56(3), 1493-1505.

Nagamitsu, S., Nagano, M., Yamashita, Y., Takashima, S., & Matsuishi, T. (2006). Prefrontal cerebral blood volume patterns while playing video games –A nearinfrared spectroscopy study. Brain and Development, 28(5), 315-321.

Matsuda, G., & Hiraki, K. (2006). Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: a NIRS study of children. Neuroimage, 29(3), 706-711.

Nikolaidis, A., Voss M. W., Lee H., Loan K.T., Kramer A. F. (2014). Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Frontiers in Human Neuroscience, 8, 1-11.

Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1997). EEG coherency. I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography and clinical neurophysiology, 103(5), 499-515.

Ostrosky-Solís, F., Gómez-Pérez, E., Ardila, A., Rosselli, M., Matute, E., Pineda, D., & Lopera, F. (2003). Batería Neuropsicológica neuropsi ATENCIÓN Y MEMORIA, 6 a 85 años de edad. Mexico: Bookstore.

Pellouchoud, E., Smith, M. E., McEvoy, L., & Gevins, A. (1999). Mental Effort-Related EEG Modulation during Video Game Play: Comparison between Juvenile Subjects with Epilepsy and Normal Control Subjects. Epilepsia, 40 (s4), 38-43.

Rieder, M. K., Rahm, B., Williams, J. D., & Kaiser, J. (2011). Human gamma-band activity and behavior. International Journal of Psychophysiology, 79, 39-48.

Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience. 27, 169-192.

Rizzolatti, G., & Luppino, G. (2001). The cortical motor system. Neuron, 31, 889–901.

Rizzolatti, G., & Sinigaglia, C. (2010). The functional roleof the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264–274.

Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S., & Passingham, R. E. (2000). The prefrontal cortex: response selection or maintenance within working memory? Science, 288(5471), 1656-1660.

Singh A. K., Ogawa, T., Hirayama, J., Maruyama, M., Kawanabe, M., & Ishii, S. (2013). Spatio-temporal and cortical characterization of EEG changes during motor imagery. Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics. doi: 10.3389/conf.fninf.2013.09.00045

Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive psychology, 33(1), 5-42.

Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Sciences, 95, 12061-12068.

Soon, C. S., Brass, M., Heinze, H. J., & Haynes, J. D. (2008). Unconscious determinants of free decisions in the human brain. Nature neuroscience, 11(5), 543-545.

Steriade, M., Curró-Dossi, R. C., Paré, D., & Oakson, G. (1991). Fast oscillations (20-40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proceedings of the National Academy of Sciences, 88(10), 4396-4400.

Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in cognitive sciences, 3(4), 151-162.

Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1996). Stimulus specificity of phaselocked and non-phase-locked 40 Hz visual responses in human. The Journal of Neuroscience, 16(13), 4240-4249.

Van Asselen, M., Kessels, R. P., Neggers, S.F., Kappelle, L.J., Frijns, C.J., & Postma, A. (2006). Brain areas involved in spatial working memory. Neuropsychologia, 4(7), 1185-1194.

von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International Journal of

Psychophysiology, 38(3), 301-313.

Wechsler, D. (1997). WAIS-Español. Escala de inteligencia para adultos. Mexico City: Manual Moderno.

White, R. (2008). Can video games improve learning, motor skills. Soundbyte, 1-16. Retrieved from



Download data is not yet available.