Actualidades en Psicología ISSN Impreso: 0258-6444 ISSN electrónico: 2215-3535

OAI: https://revistas.ucr.ac.cr/index.php/actualidades/oai
Latent Variable Models, Cognitive Modelling, and Working Memory: a Meeting Point
PDF (Español (España))
HTML (Español (España))
XML (Español (España))

Keywords

Latent variable models
formal cognitive models
psychometric
working memory
modelos de variables latentes
modelos cognitivos formales
psicometría y memoria de trabajo

How to Cite

Rodríguez-Villagra, O. A. (2015). Latent Variable Models, Cognitive Modelling, and Working Memory: a Meeting Point. Actualidades En Psicología, 29(119), 43–62. https://doi.org/10.15517/ap.v29i119.18850

Abstract

Latent variable models and formal cognitive models share some elements of their object of study, variousphilosophical aspects, and some parts of their methodology. Nevertheless, little communication exists between their theories and findings. In order to highlight similarities and differences, this study implemented and tested a formal model proposing that interference among representations is a mechanism limiting working memory capacity (i.e., the interference model of Oberauer & Kliegl, 2006). Furthermore, the study incorporated an experimental manipulation to evaluate the role of the inhibition in prepotent responses and task switching in the interference model framework. These findings were used to expose some connections that could facilitate a rapprochement between formal cognitive models and psychometric models based on the latent variable theory.
https://doi.org/10.15517/ap.v29i119.18850
PDF (Español (España))
HTML (Español (España))
XML (Español (España))

References

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum.Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of mind. Psychological Review, 111, 1036-1060.

Arendasy, M. E. & Sommer, M. (2005). The effect of different types of perceptual manipulations on the dimensionality of automatically generated figural matrices. Intelligence, 33, 307-324.

Arendasy, M. E. & Sommer, M. (2013). Reducing response elimination strategies enhances the construct validity of figural matrices. Intelligence, 41, 234-243.

Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14, 575-589.

Barrouillet, P. & Camos, V. (2009). Interference: Unique source of forgetting in working memory? Trends in Cognitive Sciences, 13, 145-146.Borsboom, D. (2006). The attack of psychometricians. Psychometrika, 71, 425-440.

Brown, G. D. A., Neath, I., & Chater, N. (2007). A ratio model of scale-invariant memory and identification. Psychological Review, 107, 127-181.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York; Springer-Verlag.

Camos, V., Lagner, P., & Barrouillet, P. (2009). Two maintenance mechanisms of verbal information in working memory. Journal of Memory and Language, 61, 457-469.

Carpenter, P.A., Just, M.A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of processing in the Raven progressive matrices test. Psychological Review, 97, 404– 431.

Cattell, R.B. (1987). Abilities: Their structures, growth, and actions. New York: North-Holland.

Conrad, R. & Hull, A. J. (1964). Information, acoustic confusion and memory span. British Journal of Psychology, 55, 75-84.

Coopeland, D. E., & Radvansky, G. A. (2001). Phonological similarity in working memory. Memory & Cognition, 29, 774-776.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-185.

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulleting, 52, 281-302.

Embretson, S. E. (1995). The role of working memory capacity and general control processes in intelligence. Intelligence, 20, 169–189.

Embretson, S. E. (2004). The second century of ability testing: Some predictions and speculations. Measurement, 2, 1-32.

Embretson, S. E. (2010). Cognitive design systems: A structural modeling approach applied to developing a spatial ability test. In S. E. Embretson (Ed.), Measuring psychological constructs: Advances in model-based approaches (pp. 247-273). Washington, DC: American Psychological Association.

Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable approach. Journal of Experimental Psychology: General, 128, 309-331.

Farrell, S. & Lewandowsky, S. (2002). An endogenous distributed model of ordering in serial recall. Psychonomic Bulletin & Review, 9, 59-79.

Forstmann, B. U., Wagenmakers, E-J., Eichele, T., Brown, S., & Serences, J. T. (2011). Reciprocal relations between cognitive neuroscience and formal cognitive models: Opposites attract? Trends in Cognitive Sciences, 15, 272-279.

Friedman, N. P. & Miyake, A. (2004). The relations among inhibition and interference cognitive functions: A latent variable analysis. Journal of Experimental Psychology: General, 133, 101-135.

Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26, 263-276.

Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In D. Gopher & A. Koriat, (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 653–675). Cambridge, MA: MIT Press.

Kvist, A., V. & Gustafsson, J-E. (2008). The relation between fluid intelligence and the general factor as a function of cultural background: A test of Cattell’s Investment theory. Intelligence, 36, 422-436.

Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence, 14, 389-433.

Lewandowsky, S., Oberauer, K., & Brown, G. D. A. (2009). Response to Barrouillet and Camos: Interference or decay in working memory. Trends in Cognitive Sciences, 13, 146-147.

Lobley, K. J., Baddeley, A. D., & Gathercole, S. E. (2005). Phonological similarity effect in verbal complex span. Quarterly Journal of Experimental Psychology, 58A, 1464-1478.

Luce, R. D. (1995). Four tensions concerning mathematical modeling in psychology. Annual Review of Psychology, 46, 1-26.

Markus, K. A. & Borsboom, D. (2013). Frontiers of test validity theory. Measurement, causation, and meaning. NY: Routledge.

McClelland, J. L. (1979). On the time relations of mental processes: an examination of systems of processes in cascade. Psychological Review, 86, 287-330.

McElree, B., & Dosher, B. A. (1989). Serial position and set size in short-term memory: the time course of recognition. Journal of Experimental Psychology: General, 118, 346-373.

Messick, S. (1989). Validity. In R. L. Linn (Ed.), Educational measurement (pp. 13-103). Washington, DC: American Council on Education and National Council on Measurement in Education.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of the executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49-100.

Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134-140.Nairne, J. S. (1990). A feature model of immediate memory. Memory & Cognition, 18(3), 251-269.

Nosofky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General 115, 39-61.

Oberauer, K. (2003). Selective attention to elements in working memory. Experimental Psychology, 50(4), 257-269.

Oberauer, K., & Kliegl, R. (2006). A formal model of capacity limits in working memory. Journal of Memory and Language, 55(4), 601-626.

Oberauer, K. & Lewandowsky, S. (2011). Modeling working memory: A computational implementation of the Time-Based Resource-Sharing theory. Psychonomic Bulletin & Review, 18,10-45.

Oberauer, K., & Lewandowsky, S., Farrell, S., Jarrold, C. & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19, 779-819.

Pages, M. P. A. & Norris, D. (1998). The primacy model: A new model of immediate serial recall. Psychological Review, 105, 761-781.

Palladino, P., Cornoldi, C., De Beni, R., & Pazzaglia, F. (2001). Working memory and updating processes in reading comprehension. Memory &Cognition, 29(2), 344-354.

Primi, R. (2001). Complexity of geometric inductive reasoning tasks. Contribution to the understanding of fluid intelligence. Intelligence 30(1), 41–70.

Psychometric Society. (2015). What is psychometrics? Retrieved from https://www.psychometricsociety.org/content/what-psychometrics

Ratcliff, R. & McKoon, G. (2007). The diffusion decision model: Theory and data for two-choice decision task. Neural Computation, 20, 873-922.

Schmiedek, F., Hildebrandt, A., Lövdén, M., Wilhelm, O., & Lindenberger, U. (2009). Complex span versus updating tasks of working memory: The gap is not that deep. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1089-1096.

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime user’s guide. Pittsburgh: Psychology Software Tools, Inc.

Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108, 550-592.

Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (4th ed.). New York: Springer-Verlag.

Wallsten, T. S., Pleskac, T. J., & Lejuez, C. W. (2011). Modeling behaviour in a clinical diagnostic sequential risk-taking task. Psychological Review, 112, 862-880.

Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44, 92-107.

Comments

Downloads

Download data is not yet available.