Agronomic assay of tomato (Lycopersicon esculentum M.) in greenhouse.
DOI:
https://doi.org/10.15517/am.v12i1.17246Abstract
The main objective of this work was to determine the adaptation potential of tomato genotypes for greenhouse. Genotypes evaluated were: hybrids: Contessa, Summer Flavor 5000, Summer Flavor 6000, Celebrity, Bonita, Shady Lady, Sunbolt, Sunny, Heat Wave and Olympic; and the variety Flora Dade, as a check. The variables evaluated were: yield, agroclimatic and physiological. agroclimatic and physiological variables were determine in three evaluations in the crop cycle, at three times/day and two leaf positions, in each evaluation. Significant correlations were found (p≤0.05) between yield in t/ha and mean yield by plant, fruits by plant at harvest, and yield by plant, and between photosynthesis and water use efficiency. Principal component analysis showed first five components have an Eigenvalue greater than one, explaining the first three with a 72% of total variance. The first component, with a 36% of total variance is due to “The yield characteristics” component two, with a 23% of total variance, is due to “internal temperature regulation characteristics” and component five, with a 7.4% of variation, to “photosyntates efficient production”. Multiple linear regression analysis difference was significant (p<0.01). Yield in t/ha was explained by the multiple linear equation (r2 =0.98) of four variables.Downloads
References
ALLEN, S.M., RUDICH, M.L. 1978. Genetics potential for overcomming physiological limitation on adaptability, yield and quality in tomato. Hort Science 13(6):673- 677.
AYARI, O., DORAIS, M., GOSSELIN, A. 2000. Daily variations of photosynthetic efficiency of greenhouse tomato plant during winter and spring. Hort Science. 125(2):235-241.
BAR-TSUR, A., RUDICH, J., BRAVDO, B. 1985. Photosynthesis, transpiration and stomatal resistance to gas exchange in tomato plants under high temperature. Journal of Horticultural Science 60(3):405-410.
BERRY, S. Z., UDDIN, M. 1988. Effect of high temperature on fruit set in tomato cultivars and selected germplasm. Hort Science 23(3):606-608.
BORREGO, E. F., MURILLO, M. 1999. Estudios fisiotécnicos para agricultura sustentable en el sur de Coahuila, México. I Seminario Regional de Investigación Agrícola para Productores. Universidad Autónoma Agraria “Antonio Narro”. Memorias.
BROSCHAT, K.T. 1979. Principal component analysis in horticultural research. Hort Science 14(2): 114-117.
CAMPBELL, D.E., LYMAN, M., CORSE, J., HAUTALA, E. 1986. On the relationships of net CO2 assimilation and leaf expansion to vegetative growth in tomato. Plant Physiol. 80:711-715.
CRAMER, M., RICHARDS, M. 1999. The effect of rhizosphere dissolved inorganic carbon gas exchange characteristics and growth rates of tomato seedlings. J. Exp. Bot. 50:79-87.
FARÍAS, F.J.M., THOMAS, N., QUIROGA, H.M. 1983. Utilización del análisis de componentes principales en la selección de líneas y variedades introducidas de Ballico anual (Lolium multiflorum L.). Agricultura Técnica en México 9(2):125-140.
G.I.I.E.Z.A.P.- UAAAN. 1991. Diagnóstico del grupo interdisciplinario de investigación en especies de zonas áridas con potencial. Dirección de Investigación. Universidad Autónoma Agraria Antonio Narro (UAAAN). Buenavista, Saltillo, Coahuila, México.
GHAWAS, E.A. 1985. Analysis of components of plant yield variation in maize. Maize Abstracts 1(1):16.
GODSHALK, B.E., TIMOTHY, H.D. 1988. Factor and principal component analysis as alternative to index selection. Theor. Appl. Genet. 76:359-360.
GUERRA, H. M. 1997. Evaluación de genotipos de tomate (Lycopersicon esculentum Mill) considerando criterios fisiológicos y de rendimiento bajo condiciones de altas temperaturas, en invernadero.Tesis de maestría, UAAAN Saltillo, Coah. Méx.
HETHERINGTON, S., SMILLIE, R., DAVIES, W. 1998. Photosynthetic activities of vegetative and fruiting tissues of tomato. J. Exp. Bot. 49:1173-1181.
LEMAIRE, G., MILLARD, P. 1999. An ecophysiological approach to modelling resource fluxes in competing plants. J. Exp. Bot. 50:15-28.
LONG, S.P., HALLGREN, V.E. 1993. Measurement of CO2 assimilation by plants in the field and the laboratory. In: Photosynthesis and production in a changing environment. Hall, D.O., J.M.O. Scurlock, H.R. Bolthar-Nordenkamat, P.C. Leegood, and S.P. Long eds. Chapman & Hall, London. p.129-167
MARTÍNEZ, M. P. 1999. Selección fisiotécnica de genotipos sobresalientes de tomate (Lycopersicon esculentum Mill.) en invernadero. Tesis de licenciatura, UAAAN. Saltillo, Coah. Méx.
PEARCE, B.D., GRANGE, R.I., HARDWICK, K. 1993. The Growth of young tomato fruit. I. Effect of temperature and irradiance on fruit grown under controlled environments. Journal of Horticultural Science 68(1):1-11.
PEET, M. M., BARTHOLOMEW, M. 1996. Effect of night temperature on pollen characteristics, growth and fruit set in tomato. Journal of the American Society for Horticultural Science 121(3) 514-519.
POLLMAN, M.G., FELL, D.A., THOMAS, S. 2000. Modelling photosynthesis and its control. J. Exp. Bot. 51:319-328.
REDDY, V.R., PACHEPSKY, L.B., ACOCK, B. 1994. Response of crop photosynthesis to carbon dioxide, temperature and light. Experimentation and modeling. Hort Science 29(2):1415-1422.
SAGAR. 1997. Anuario estadístico de la producción agrícola de los Estados Unidos Mexicanos.
SMILLIE, R., HETHERINGTON, S., DAVIES, W. 1999. Photosynthesis activity of the calyx, green shoulder, pericarp, and locular parenchyma of tomato fruit. J. Exp. Bot. 50:707-718.
SWENNEY, D.W., GRAETZ, D.A., BOCHTER, A.B., LOCASCIO, S.J., CAMPBELL, K.L. 1987. Tomato yield and nitrogen recovery as influenced by irrigation method, nitrogen source, and mulch. Hort Science 28(1)27- 29.
XU, H., GAUTHIER, L., GOSSELIN, A. 1995. Effects of fertigation on management on growth and photosynthesis of tomato plants grown in peat, rockwool and NFT. Scientia Horticulturae 63(1-2):11-20.
Downloads
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).