Agronomic assay of tomato (Lycopersicon esculentum M.) in greenhouse.

Authors

  • Fernando Borrego Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • Alfonso López Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • José M. Fernández Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • Margarita Murillo Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • Sergio A. Rodríguez Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • Alfonso Reyes Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • Juan M. Martínez Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México

DOI:

https://doi.org/10.15517/am.v12i1.17246

Abstract

The main objective of this work was to determine the adaptation potential of tomato genotypes for greenhouse. Genotypes evaluated were: hybrids: Contessa, Summer Flavor 5000, Summer Flavor 6000, Celebrity, Bonita, Shady Lady, Sunbolt, Sunny, Heat Wave and Olympic; and the variety Flora Dade, as a check. The variables evaluated were: yield, agroclimatic and physiological. agroclimatic and physiological variables were determine in three evaluations in the crop cycle, at three times/day and two leaf positions, in each evaluation. Significant correlations were found (p≤0.05) between yield in t/ha and mean yield by plant, fruits by plant at harvest, and yield by plant, and between photosynthesis and water use efficiency. Principal component analysis showed first five components have an Eigenvalue greater than one, explaining the first three with a 72% of total variance. The first component, with a 36% of total variance is due to “The yield characteristics” component two, with a 23% of total variance, is due to “internal temperature regulation characteristics” and component five, with a 7.4% of variation, to “photosyntates efficient production”. Multiple linear regression analysis difference was significant (p<0.01). Yield in t/ha was explained by the multiple linear equation (r2 =0.98) of four variables.

Downloads

Download data is not yet available.

References

ALLEN, S.M., RUDICH, M.L. 1978. Genetics potential for overcomming physiological limitation on adaptability, yield and quality in tomato. Hort Science 13(6):673- 677.

AYARI, O., DORAIS, M., GOSSELIN, A. 2000. Daily variations of photosynthetic efficiency of greenhouse tomato plant during winter and spring. Hort Science. 125(2):235-241.

BAR-TSUR, A., RUDICH, J., BRAVDO, B. 1985. Photosynthesis, transpiration and stomatal resistance to gas exchange in tomato plants under high temperature. Journal of Horticultural Science 60(3):405-410.

BERRY, S. Z., UDDIN, M. 1988. Effect of high temperature on fruit set in tomato cultivars and selected germplasm. Hort Science 23(3):606-608.

BORREGO, E. F., MURILLO, M. 1999. Estudios fisiotécnicos para agricultura sustentable en el sur de Coahuila, México. I Seminario Regional de Investigación Agrícola para Productores. Universidad Autónoma Agraria “Antonio Narro”. Memorias.

BROSCHAT, K.T. 1979. Principal component analysis in horticultural research. Hort Science 14(2): 114-117.

CAMPBELL, D.E., LYMAN, M., CORSE, J., HAUTALA, E. 1986. On the relationships of net CO2 assimilation and leaf expansion to vegetative growth in tomato. Plant Physiol. 80:711-715.

CRAMER, M., RICHARDS, M. 1999. The effect of rhizosphere dissolved inorganic carbon gas exchange characteristics and growth rates of tomato seedlings. J. Exp. Bot. 50:79-87.

FARÍAS, F.J.M., THOMAS, N., QUIROGA, H.M. 1983. Utilización del análisis de componentes principales en la selección de líneas y variedades introducidas de Ballico anual (Lolium multiflorum L.). Agricultura Técnica en México 9(2):125-140.

G.I.I.E.Z.A.P.- UAAAN. 1991. Diagnóstico del grupo interdisciplinario de investigación en especies de zonas áridas con potencial. Dirección de Investigación. Universidad Autónoma Agraria Antonio Narro (UAAAN). Buenavista, Saltillo, Coahuila, México.

GHAWAS, E.A. 1985. Analysis of components of plant yield variation in maize. Maize Abstracts 1(1):16.

GODSHALK, B.E., TIMOTHY, H.D. 1988. Factor and principal component analysis as alternative to index selection. Theor. Appl. Genet. 76:359-360.

GUERRA, H. M. 1997. Evaluación de genotipos de tomate (Lycopersicon esculentum Mill) considerando criterios fisiológicos y de rendimiento bajo condiciones de altas temperaturas, en invernadero.Tesis de maestría, UAAAN Saltillo, Coah. Méx.

HETHERINGTON, S., SMILLIE, R., DAVIES, W. 1998. Photosynthetic activities of vegetative and fruiting tissues of tomato. J. Exp. Bot. 49:1173-1181.

LEMAIRE, G., MILLARD, P. 1999. An ecophysiological approach to modelling resource fluxes in competing plants. J. Exp. Bot. 50:15-28.

LONG, S.P., HALLGREN, V.E. 1993. Measurement of CO2 assimilation by plants in the field and the laboratory. In: Photosynthesis and production in a changing environment. Hall, D.O., J.M.O. Scurlock, H.R. Bolthar-Nordenkamat, P.C. Leegood, and S.P. Long eds. Chapman & Hall, London. p.129-167

MARTÍNEZ, M. P. 1999. Selección fisiotécnica de genotipos sobresalientes de tomate (Lycopersicon esculentum Mill.) en invernadero. Tesis de licenciatura, UAAAN. Saltillo, Coah. Méx.

PEARCE, B.D., GRANGE, R.I., HARDWICK, K. 1993. The Growth of young tomato fruit. I. Effect of temperature and irradiance on fruit grown under controlled environments. Journal of Horticultural Science 68(1):1-11.

PEET, M. M., BARTHOLOMEW, M. 1996. Effect of night temperature on pollen characteristics, growth and fruit set in tomato. Journal of the American Society for Horticultural Science 121(3) 514-519.

POLLMAN, M.G., FELL, D.A., THOMAS, S. 2000. Modelling photosynthesis and its control. J. Exp. Bot. 51:319-328.

REDDY, V.R., PACHEPSKY, L.B., ACOCK, B. 1994. Response of crop photosynthesis to carbon dioxide, temperature and light. Experimentation and modeling. Hort Science 29(2):1415-1422.

SAGAR. 1997. Anuario estadístico de la producción agrícola de los Estados Unidos Mexicanos.

SMILLIE, R., HETHERINGTON, S., DAVIES, W. 1999. Photosynthesis activity of the calyx, green shoulder, pericarp, and locular parenchyma of tomato fruit. J. Exp. Bot. 50:707-718.

SWENNEY, D.W., GRAETZ, D.A., BOCHTER, A.B., LOCASCIO, S.J., CAMPBELL, K.L. 1987. Tomato yield and nitrogen recovery as influenced by irrigation method, nitrogen source, and mulch. Hort Science 28(1)27- 29.

XU, H., GAUTHIER, L., GOSSELIN, A. 1995. Effects of fertigation on management on growth and photosynthesis of tomato plants grown in peat, rockwool and NFT. Scientia Horticulturae 63(1-2):11-20.

How to Cite

Borrego, F., López, A., Fernández, J. M., Murillo, M., Rodríguez, S. A., Reyes, A., & Martínez, J. M. (2006). Agronomic assay of tomato (Lycopersicon esculentum M.) in greenhouse. Agronomía Mesoamericana, 12(1), 49–56. https://doi.org/10.15517/am.v12i1.17246

Most read articles by the same author(s)