Agronomic assay of cantaloupe (Cucumis melo L.) genotypes under field conditions.

Authors

  • Fernando Borrego Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • Alfonso López Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • José M. Fernández Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • Margarita Murillo Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • Sergio A. Rodríguez Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • Alfonso Reyes Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México
  • Juan M. Martínez Universidad Autónoma Agraria “Antonio Narro”. Saltillo, Coah. México

DOI:

https://doi.org/10.15517/am.v12i1.17247

Abstract

With the objective to determine correlations between yield and principal components of variation of cantaloupe genotypes, in Ramos Arizpe, Coahuila, 12 genotypes were established, in a Complete Randomized Block design with four replications. An experimental plot of two rows five meters long sown at double hill. The genotypes studied were: hybrids: Primo, Pronto, Challenger, Cheyenne, Hi-Line, Cruiser, Durango, Apache, Laguna, Caravelle and Main Pack, and the variety Top Mark, as a control. The variables evaluated were: yield (11 variables: quantitative and qualitative); phenology (three variables); agroclimatic (five variables) and physiologicals (four variables); significant and negative correlations (p<0.05) were found between yield and earliness, mean fruit weight, number of fruits, and between fruit number and fruit lenght. The most correlated physiological variables were photosynthesis and water use efficiency. With the principal component analysis up to the component three 65 % of variance is explained. Component one showed a high value on yield, weight and size characteristics, and called as “Yield Quantitative Characteristics”. In component two, “Earliness Component” showed the higher variations. Component three to six, explain similar proportions the other variables, being the sixth where was found the highest Photosynthesis. Multiple linear regression was significant (p<0.057), due to field conditions, can be considered adequate. Yield in t/ha is explained by a multiple linear equation (r2=0.99) of 10 variables.

Downloads

Download data is not yet available.

References

ACOCK, B., ACOCK, M.C., PASTERNAK, D. 1990. Interaction of CO2 enrichment and temperature on carbohydrate production and accumulation in muskmelon leaves. Jour. Am. Soc. Hort. Sci. 115(4): 525-529.

BOOTE, K.J., PICKERING, N.B. 1994. Modeling photosynthesis of row crop canopies. Hort Science 29(12): 363-370.

BROSCHAT, K.T. 1979. Principal component analysis in horticultural research. Hort Science 14(2): 114-117.

BRANDERBERGER, L., WIEDENFELD, B. 1997. Physical characteristics of mulches and their impact on crop response and profitability in muskmelon production. Horttechnology 7(2): 165-169.

CASTILLA, N., GALLEGO, A., CRUZ, G., MUÑOZ, R. 1998. Greenhouse melon response to plastic mulch. Acta Horticulturae 458: 263-267.

FARÍAS, F.J.M., THOMAS, N., QUIROGA, H.M. 1983. Utilización del análisis de componentes principales en la selección de líneas y variedades introducidas de Ballico anual (Lolium multiflorum L.). Agricultura Técnica en México 9(2): 125-140.

GARCIA, E., JAMILENA, M., ALVAREZ, J.I., ARNEDO, T., OLIVER, J.L., LOZANO, R. 1998. Genetic relationship among melon breeding lines revealed by RAPD markers and agronomic traits. Theoret. and Appl. Gen. 96(6-7): 878-885.

GODSHALK, B.E., TIMOTHY, H.D. 1988. Factor and principal component analysis as alternatives to index selection. Theor. Appl. Genet. 76:352-360.

JENNI, S., STEWART, K.A., BOURGEOIS, G., CLOUTIER, D.C. 1998a. Predicting yield and time to maturity of muskmelons from weather and crop observations. Jour. Am. Soc. Hort. Sci. 123(2): 195-201.

JENNI, S., STEWART, K.A., CLOUTIER, D.C., BOURGEOIS, G. 1998b. Chilling injury and yield of muskmelon grown with plastic mulches, row covers and thermal water tubes. Hort Science 33(2): 215-221.

LI-COR, INC. 1990. The LI-6200 Primer. An introduction to operating the LI-6200 portable photosyntesis system. Lincoln, Nebraska. USA.

DE LANGE, A.J., COMBRINK, N.J. 1998. The effects of soil mulch colour and nutrient solution concentration on the development of melon seedlings. Jour. South. Af. Soc. Hort. Sci. 8(1): 10-11.

LEMAIRE, J.M., BERAUD, J., GINOUX, G., CONUS, M, FERRIERE, H., NICOLAS, R., MAS, P. 1997. Powdery mildew of melon. Certain cultural practices can influence the development of epidemics. Phytoma 50(1): 42-46.

LEMAIRE, J.M., CONUS, M., MAS, P., BARDIN, M., FERRIERE, H., NICOLT, P. 1998. Powdery mildew of cucurbitaceous crops: the epidemic cycle and the range of hosts. Phytoma 50(8): 34-37.

MARTINS, S.R., PEIL, R.M., SCHEWENGBER, J.A., MENDEZ, M. 1998. Greenhouse melon production in different plant cultivation systems. Horticultura Brasileira 16(1): 24-30.

MATSUDA, Y., TOYODA, H., VEDA, A., TAMAKI, S., HOSOI, Y., ORECHI, S. 1997. Establishment of photoynthetic hairy roots in cultures of melon leaves (Cucumis melo L.) Environment control in biology 35(2): 131-134.

RANSMARK, S.E. 1995. The influence of light intensity on photosynthesic yield. Report, Department of Agricultural Biosystems and Technology. Swedish University of Agricultural Sciences, Lund, Sweden.

REDDY, V.R., PACHEPSKY, L.B., ACOCK, B. 1994. Response of crop photosynthesis to carbon dioxide, temperature and light. Experimentation and Modeling. Hort Science 29(12): 1415-1422.

RINCO, L., SAEZ, J., PEREZ, J.A., MADRID, R. , MUÑOZ, R. 1998. Growth and nutrient absorption by muskmelon crop under greenhouse conditions. Acta Horticulturae 458: 153-159.

SEGURA, M.L., CADAHIA, C., ABAD, M., LÓPEZ, A., MUÑOZ, R. 1998. Fertigation of a melon crop grown in black sedge peat-bassed soilless media under saline conditions. Acta Horticulturae 458: 369-375.

TAELK, L., CHEON, J., KEUNCHANG, Y., TI, L., JEONG, C.S., YOO, K.C. 1996. Effects of light intensity and night temperature on sugar accumulation of muskmelon in warm season. Joue. Korean Soc. Hort. Sci. 37(6): 741-745.

TRENTINI, L., PIAZZA, R. 1998. Global productions of melons. Informatore Agrario Supplemento 54(3): 7-12.

VENTURA, Y., MEDLINGER, S. 1998. Effects of suboptimal low temperatures on plant architecture and flowering muskmelons (Cucumis melo L). Journal of Horticultural Science and Biotechnology 73(5): 640-646.

WEIHONG, G. 1998. Evaluation of main horticultural characters and selection of melon varieties. Acta Agriculturae- Shangai, 14(3): 41-45

How to Cite

Borrego, F., López, A., Fernández, J. M., Murillo, M., Rodríguez, S. A., Reyes, A., & Martínez, J. M. (2006). Agronomic assay of cantaloupe (Cucumis melo L.) genotypes under field conditions. Agronomía Mesoamericana, 12(1), 57–63. https://doi.org/10.15517/am.v12i1.17247

Most read articles by the same author(s)