Fodder shrubs and fatty acids: strategies to reduce enteric methane production in cattle.
DOI:
https://doi.org/10.15517/am.v28i1.21466Keywords:
methanogenesis, silvopastoral system, lipid supplementation, Tithonia diversifolia.Abstract
The aim of this study was to analyze the use of fodder shrubs and polyunsaturated fatty acids as a nutritional strategy to mitigate enteric methane production in cattle. Special emphasis was made on the use of Tithonia diversifolia (Hemsl.) A. Gray (Mexican sun ower), as a species with antimethanogenic potential. Bibliographic information for this review was obtained between July and September 2015 by using key words. Methane is a powerful greenhouse gas (GHG), the increase of its atmospheric concentration is caused mainly by emissions from agriculture and industry, but it is also estimated that a proportion of methane is emitted by ruminants as a product of enteric and anaerobic fermentation of diet. This causes an environmental and productive problem in livestock production systems worldwide. Although there is controversy about the real contribution of methane by ruminants and its impact on environmental issues, the amount of emissions should try to be reduced.This document emphasizes the search for nutritional strategies such as supplementation with forage shrubs and sources of polyunsaturated fatty acids, which have shown potential to maintain animal production efficiency and decrease enteric methane synthesis.
Downloads
References
Angarita, E.A. 2013. Efecto de la inclusión de un forraje tanífero sobre las poblaciones metanogénicas del ecosistema ruminal en condiciones in vitro e in vivo. Tesis MSc. Universidad Nacional de Colombia, Bogotá, COL.
Apráez, J., J.M. Delgado, y J.P. Narváez. 2012. Composición nutricional, degradación in vitro y potencial de producción de gas, de herbáceas, arbóreas y arbustivas encontradas en el trópico alto de Nariño. Livest. Res. Rural Dev. 24(3). http://www.lrrd.org/lrrd24/3/apra24044.htm
Barahona, R., C. Lascano, N. Narváez, E. Owen, P. Morris, and M. Theodorou. 2003. In vitro degradability of mature and immature leaves of tropical forage legumes differing in condensed tannin and non-starch polysaccharide content and composition. J. Sci. Food Agric. 83:1256-1266.
Barbehenn, R.V., and C.P. Constabel. 2011. Review tannins in plant–herbivore interactions. Phytochemistry 72: 1551-1565.
Barry, T., and W. Mcnabb. 1999. The effect of condensed tannins in temperate forages on animal nutrition and productivity. Tannin Livestock Human Nutr. 92:30-35.
Beauchemin, K., M. Kreuzer, F. O’Mara, and T. McAllister. 2008. Nutritional management for enteric methane abatement: a review. Aust. J. Exp. Agr. 48:21-27.
Beauchemin, K.A., S. McGinn, C. Benchaar, and L. Holtshausen. 2009. Crushed sun ower, ax, or canola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 92:2118-2127.
Beauchemin, K., S. McGinn, T. Martínez, and T. McAllister. 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 85:1990-1996.
Bodas, R., N. Prieto, R. García-González, S. Andrés, F. Girál- dez, and S. López. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 176:78-93.
Boeckaert, C., B. Vlaemink, J. Dijkstra, A. Issa-Zacharia, T. Van Nespen, W. Van Straalen, and V. Fievez. 2008. Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. J. Dairy Sci. 91:4714-4727.
Bonilla, J.A., y C.L. Lemus. 2012. Emisión de metano entérico por rumiantes y su contribución al calentamiento global y al cambio climático. Rev. Mex. Cienc. Pecu. 3:215-246.
Buddle, B.M., M. Denis, E. Altermann, G. Attwood, P. Janssen, R. Ronimus, C. Pinares, S. Muetzel, and N. Wedlock. 2011. Strategies to reduce methane emissions from farmed ruminants grazing on pasture. The Veterinary J. 188:11-17.
Calle, Z., y E. Murgueitio. 2008. El botón de oro: arbusto de gran utilidad para sistemas ganaderos de tierra caliente y de montaña. Carta Fedegan 108:54-60.
Carmona, J. 2007. Efecto de la utilización de arbóreas y arbustivas forrajeras sobre la dinámica digestiva en bovinos. Rev. Lasallista Invest. 4:40-50.
Carmona, J.C., D.M. Bolívar, y L.A. Giraldo. 2005. El gas metano en la producción ganadera y alternativas para medir sus emisiones y aminorar su impacto a nivel ambiental y productivo. Rev. Col. Cienc. Pec.18:49-63.
Chase, L. 2007. Methane emissions from dairy cattle. In: E. Muhlbauer et al., editors, Proceedings of mitigating air emissions from animal feeding operations conference. College of Agriculture and Life Sciences, IA, USA. p. 106-109.
Chilliard, Y., et A. Ollier. 1994. Alimentation lipidique et métabolisme du tissu adipeux chez les ruminants. Comparaison avec le porc et les rongeurs. INRA Prod. Anim. 7:293-308.
Chow, T., V. Fievez, A. Moloney, K. Raes, D. Demeyer, and S. De Smet. 2004. Effect of sh oil on in vitro rumen lipolysis, apparent biohydrogenation of linoleic and linolenic acid and accumulation of biohydrogenation intermediates. Anim. Feed Sci. Technol. 117:1-12.
Cieslak, A., R. Miltko, G. Bełżecki, M. Szumacher-Strabel, A. Potkański, E. Kwiatkowska, and T. Michałowski. 2006. Effect of vegetable oils on the methane concentration and population density of the rumen ciliate, Eremoplastron dilobum, grown in vitro. J. Anim. Feed Sci. 15:15-18.
Collomb, M., A. Schmid, R. Sieber, D. Wechsler, and L. Ryhanen. 2006. Conjugated linoleic acids in milk fat: Variation and physiological effects. Int. Dairy J. 16: 1347-1361.
CORPOICA (Corporación Colombiana de Investigación Agropecuaria). 2011. Evaluación de sistemas de alimentación en vacas Holstein y su efecto sobre la productividad animal, la emisión de metano y de óxido nitroso y la captura de carbono en la Sabana de Bogotá. Informe técnico. http://agronet.gov.co/www/recursos_2011/documentos_cambio/doc4.pdf. (consultado jun. 2015).
Cuellar, A., Márquez, I. Hernández, y J. Alemán. 1999. Estudio fotoquímico de la especie Hibiscus elatuss. w. Rev. Cub. Farm. 33:127-31.
Dardon, V., y M. Durán. 2011. Cuantificación espectrofotométrica de taninos y análisis bromatológico proximal de cuatro diferentes mezclas de forrajes a base de gramíneas y leguminosas. Trabajo de graduación Lic. Universidad El Salvador, San Salvador, ESA.
Delgado, D., J. Galindo, R. González, N. González, I. Scull, L. Dihigo, J. Cairo, A. Aldama, and O. Moreira. 2012. Feeding of tropical trees and shrub foliages as a strategy to reduce ruminal methanogenesis: studies conducted in Cuba. Trop. Anim. Prod. 44:1097-1104.
Delgado, D., C. González, J. Galindo, J. Cairo, and M. Almeida. 2007. Potential of Trichantera gigantea and Morus albato reduce in vitro rumen methane production. Cub. J. Agric. Sci. 41:319.
Demeyer, D., et V. Fievez. 2000. Ruminants et environnement: la méthanogenèse. Ann. Zootech. 49:95-112.
Deppenmeier, U. 2002. The unique biochemijalcstry of methanogenesis. Prog. Nucleic Acid Res. Mol. Biol. 71:223-283.
Deppenmeier, U., and V. Müller. 2008. Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results Probl Cell Differ. 45:123-152.
DeRamus, H.A., T. Clement, D. Giampola, and P. Dickison. 2003. Methane emissions of beef cattle on forages: efficiency of grazing management systems. J. Environ Qual. 32:269-277.
Días, A., M. Avendaño, and A. Escobar.1993. Evaluation of Sapindus saponaria as a defaunating agent and its effects on different ruminal digestión parameters. Livest. Res. Rural Dev. 5:1-6.
Dohme, F., A. Machmüller, A. Wasserfallen, and M. Kreuzer. 2000. Comparative ef ciency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can. J. Anim. Sci. 80:473-482.
Doreau, M., and A. Ferlay. 1994. Digestion and utilization of fatty acids by ruminants. Anim. Feed Sci. Technol. 45:379-396.
Duque, G. 2008. Cambio climático y turismo en Colombia. Universidad Nacional de Colombia, Santa Marta, COL. https://core.ac.uk/download/pdf/11051968.pdf (consultado 10 jul. 2015).
Eugene, M., D. Masse, J. Chiquette, and C. Benchaar. 2008. Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Can. J. Anim. Sci. 88:331-334.
FAO (Food and Agriculture Organization of the United Nations). 2009. La larga sombra del ganado, problemas ambientales y opciones. http://www.fao.org/docrep/011/a0701s/a0701s00.htm (consultado 5 jul. 2015).
Fievez, V., F. Dohmeb, M. Danneels, K. Raes, and D. Demeyer. 2003. Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Anim. Feed Sci. Tech. 104:41.
Fievez, V., B. Vlaeminck, T. Jenkins, T. Enjalbert, and M. Doreau. 2007. Assessing rumen biohydrogenation and its manipulation in vivo, in vitro and in situ. Eur. J. Lipid Sci. Technol. 109:740-756.
Fukuda S., Y. Suzuki, M. Murai, N. Asanuma, and T. Hino, 2006. Isolation of a novel strain of Butyrivibrio brisol- vens that isomerizes linoleic acid to conjugated linoleic acid without hydrogenation, and its utilization as a probiotic for animals. J. Appl. Microbiol. 100:787-794.
Galindo, J., D. Delgado, R. Pedraza, and D. García. 2005. Impact of trees, shrubs and other legumes on the ruminal ecology of animals fed brous diets. Rev. Pastos y Forrajes 28:59-68.
Galindo, J., N. González, A. Sosa, T. Ruíz, V. Torres, A. Aldana, H. Díaz, O. Moreira, L. Sarduy, y A. Noda. 2011. Efecto de Tithonia diversifolia (Hemsl.) A. Gray (botón de oro) en la población de protozoos y metanógenos ruminales en condiciones in vitro. Rev. Cub. Cienc. Agríc. 45:33-37.
Gallego, L.A., L. Mahecha, y J. Angulo. 2014. Potencial forrajero de Tithonia diversifolia Hemsl. A Gray en la producción de vacas lecheras. Agron. Mesoam. 25:393-403.
Giger-Reverdin, S., P. Morand-Fehr, and G. Tran. 2003. Literature survey of the in uence of dietary fat composition on methane production in dairy cattle. Livest. Prod. Sci. 82:73-79.
Gil, S. 2006. Sistema de producción de carne bovina: Engorde intensivo (feedlot), elementos que intervienen y posibles impactos en el medio ambiente. http://www.produccion-animal.com.ar/informacion_tecnica/invernada_o_engorde_a_corral_o_feedlot/08-feedlot. pdf. (consultado 10 jul. 2015).
Givens, D.I., K.E. Kliem, and R.A. Gibbs. 2006. The role of meat as a source of n-3 polyunsaturated fatty acids in the human diet. Meat Sci. 74:209-218.
González, N., J. Galindo, A. Aldana, O. Moreira, L. Sarduy, L. Abadía, and M. Santos. 2010. Evaluation of different varieties of mulberry (Morus alba) in the control of methanogenesis in buffalo rumen liquid. Cub. J. Agric. Sci. 44:37.
Hess, H.D., L.M. Monsalve, J.E. Carulla, C.E. Lascano, T.E. Díaz, and M. Kreuzer. 2002. In vitro evaluation of the effect of Sapindus saponaria on methane release and microbial populations. http://www.ciat.cgiar.org/forrajes/pdf/output1_2002.pdf. (accessed 5 jun. 2015).
IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales). 2009. Inventario nacional de fuentes y sumideros de gases de efecto invernadero 2000–2004. Bogotá D.C. http://documentacion.ideam.gov.co/openbiblio/bvirtual/021471/InventarioGEI/IDEAM1.pdf (consultado 10 feb. 2016).
IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change 2007: synthesis report. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf (accessed 10 jul. 2015).
Jalc, D., M. Certik, K. Kundrikova, and P. Namestrova. 2007. Effect of unsaturated C18 fatty acids (oleic, linoleic, and α-linolenic acid) on ruminal fermentation and production of fatty acid isomers in an artificial rumen. Vet. Med. 52:87-94.
Jalc, D., S. Kisidayova, and F. Nerud. 2002. Effect of plant oils and organic acids on rumen fermentation in vitro. Folia Microbiol. 47:171-177.
Janssen, P.H. 2010. In uence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160:1-22.
Johnson, K.A., and D.E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-92.
Jouany, J. 1994. Methods of manipulating the microbial metabolism in the rumen. Ann. Zootech. 43:49.
Kaitho, R., N. Umunna, I. Nsahlai, S. Tamminga, and J. Van
Bruchem. 1997. Utilization of browse supplements with varying tannin levels by ethiopian menz sheep, intake, digestibility and live weight changes. Agrofor. Syst. 39:145-159.
Kebreab, E., J. France, B. McBride, N. Odongo, A. Bannink, J. Mills, and J. Dijkstra. 2006. Evaluation of models to predict methane emissions from enteric fermentation in North American dairy cattle. In: E. Kebreab et al., editors, Nutrient digestion and utilization in farms animals: modelling approaches. CAB International, Wallingford, GBR. p. 229-313.
Kinsman, R., F. Sauer, H. Jackson, and M. Wolynetz. 1995. Methane and carbon dioxide emissions from dairy cows in full lactation monitored over a six month period. J. Dairy. Sci. 78:2760-2766.
Lezcano, Y., M. Soca, L. Sánchez, F. Ojeda, Y. Olivera, D. Fontes, I. Montejo, y H. Santana. 2012. Caracterización cualitativa del contenido de metabolitos secundarios en la fracción comestible de Tithonia diversifolia (Hemsl.) Rev. Pastos y Forrajes 35:283-291.
Machmüller, A., C. Soliva, and M. Kreuzer. 2002. In vitro ruminal methane suppression by lauric acid as influenced by dietary calcium. Can J Anim Sci. 82(2): 233-239.
Machmüller, A., D. Ossowski, M. Wanner, and M. Kreuzer. 1998. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Technol. 71:117-130.
Maina, I., S. Abdulrazak, C. Muleke, and T. Fujihara. 2012. Potential nutritive value of various parts of wild sun ower (Tithonia diversifolia) as source of feed for ruminants in Kenya. J. Food Agric. 10:632-635.
Marín, A. 2013. Estimación del inventario de emisiones de metano entérico de ganado lechero en el departamento de Antioquia, Colombia. Tesis MSc. Universidad Nacional de Colombia, Medellín, COL.
Martin C., J. Rouel, J. Jouany, M. Doreau, and Y. Chilliard. 2008. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J. Anim. Sci. 86:2642-2650.
Martin, C., D. Morgavi, and M. Doreau. 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4(3):351-365.
Maurício, R., R. Ribeiro, S. Silveira, P. Silva, L. Calsavara, L. Pereira, y D. Paciullo. 2014. Tithonia diversifolia for ruminant nutrition. Trop. Grasslands 2:82-84.
Medina, M., E. García, L. González, L. Cova, y P. Morantinos. 2009. Variables morfo-estructurales y de calidad de la biomasa de Tithonia diversifolia en la etapa inicial de crecimiento. Zootec. Trop. 27:121-134.
Moate, P. 2010. Reducing methane emissions from dairy cows. Gippsland – How Now Gippy Now - September 2010. http://www.dpi.vic.gov.au/agriculture/about-agriculture/newsletters-andupdates/newsletters/how-now-gippy-cow/september/reducing-methaneemissions-from-dairy-cows. (accesed jun. 2015).
Moate, P., S. Williams, M. Hannah, R. Eckard, M. Auldist, B. Ribaux, J. Jacobs, and W. Wales. 2013. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J. Dairy Sci. 97:5073-5087.
Molina, I., G. Donney ́s, S. Montoya, G. Villegas, J. Rivera, J. Lopera, J. Chará, y R. Barahona. 2015. Emisiones in vivo de metano en sistemas de producción con y sin inclusión de Tithonia diversifolia. En: P. Peri, editor, 3o Congreso Nacional de Sitemas Silvopastoriles-VIII Congreso Internacional de Sistemas Agroforestales. Ediciones INTA, ARG. p. 678-682.
Molina, I., J. Cantet, S. Montoya, G. Correa, y R. Barahona. 2013. Producción de metano in vitro de dos gramíneas tropicales solas y mezcladas con Leucaena leucocephala o Gliricidia sepium. Rev. CES Med.Vet. y Zootec. 8:15-31.
Morand-Fehr, P., et G. Tran. 2001. La fraction lipidique des aliments et les corps gras utilisés en alimentation animale. INRA Prod. Anim. 14:285-302.
Moss, A., and D. Givens. 2002. The effect of supplementing grass silage with soya bean meal on digestibility, in sacco degradability, rumen fermentation and methane production in sheep. Anim. Feed Sci. Technol. 97:127-143.
Moss, A., J. Jouany, and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49:231-253.
Muñoz, C., T. Yan, D. Wills. S. Murray, and A. Gordon. 2012. Comparison of the sulfur hexa uoride tracer and respiration chamber techniques for estimating methane emissions and correction for rectum methane output from dairy cows. J. Dairy Sci. 95:3139-3148.
Murray, R., A. Bryant, and R. Leng. 1976. Rates of production of methane in the rumen and large intestine of sheep. Brit. J. Nutr. 36:1-14.
Navas, A. 2008. Efecto de los sistemas silvopastoriles en la reducción del estrés calórico y su importancia en la producción bovina tropical. Rev. El Cebú. 359:14-17.
Navas, A., M. Laredo, A. Cuesta, H. Anzola, and J. León. 1992. Evaluation of Enterolobium ciclocarpum as dietary alternative to eliminate protozoa from the rumen. Livest. Res. Rural Dev. 4: art. 7. http://www.lrrd.org/lrrd4/1/orejero.htm
Odongo, N., M. Or-Rashid, E. Kebreab, J. France, and B. McBride. 2007. Effect of supplementing myristic acid in dairy cows rations on ruminal methanogenesis and fatty acid pro le in milk. J. Dairy Sci. 90:1851-1858.
OMM (Organización Meteorológica Mundial). 2015. Boletín sobre los gases de efecto invernadero. https://www.wmo.int/media/es/content/las-concentraciones- de-gases-de-efecto-invernadero-vuelven-batir-un-r%C3%A9cord. (consultado 4 feb. 2016).
Ortiz, D., R. Noguera, y S. Posada. 2014. Efecto de metabolitos secundarios de las plantas sobre la emisión entérica de metano en rumiantes. Livest. Res. Rural Dev. 26: art. 11 http://www.lrrd.org/lrrd26/11/ orti26211.html
Palmquist, D., A. Lock, K. Shing eld, and D. Bauman. 2005. Biosynthesis of conjugated linoleic acid in ruminants and humans. Adv. Food Nutr. Res. 50:179-217.
Patra, A. 2013. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci. 155:244-254.
Patra, A., and J. Saxena. 2009. A review of the effect and mode of action of saponins on microbial population and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 22:204-219.
Patra, A., and J. Saxena. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 71: 1198-1222.
Pavarini, D., S. Pavarini, M. Niehues, and N. Lopes. 2012. Exogenous influences on plant secondary metabolite levels. Anim. Feed Sci.Technol. 176:5-16.
Pirondini, M., S. Colombini, M. Mele, L. Malagutti, L. Rapetti, G. Galassi, and G. Crovetto. 2015. Effect of dietary starch concentration and sh oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows. J. Dairy Sci. 98:357-372.
Posada, S., G. Montoya, y A. Ceballos. 2005. Caracterización de los taninos en la nutrición de rumiantes. Biogénesis: Bioquímica, nutrición y alimentación de la vaca 161-180.
Ramírez, J.F., S. Posada, y R. Noguera. 2014. Metanogénesis ruminal y estrategias para su mitigación. Rev. CES Med. Vet. Zootec. 9:307-323.
Roig, N.A. 2013. Alimentación y calentamiento global: «La larga sombra del ganado» en la prensa española. Estudios sobre el Mensaje Periodístico 19:17-33.
Rosales, M., M. Laredo, A. Cuesta, A. Anzola, and L. Hernandez. 1989. Use of tree forages for the control of rumen protozoa. Livest. Res. Rural Dev. 1:79.
Santacoloma, L., y J. Granados. 2012. Interrelación entre el contenido de metabolitos secundarios de las especies Gliricidia sepium y Tithonia diversifolia y algunas propiedades físicoquímicas del suelo. RIAA 3(1): 53-62.
Schink, B. 2006. Syntrophic associations in methanogenic degradation. In: J. Overmann, editor, Molecular basis of symbiosis. Springer, HOL. p. 1-19.
Skillman, L.C., P.N. Evans, G.E. Naylor, B. Morvan, and G.N. Jarvis. 2004. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identi cation of methanogens colonising young lambs. Anaerobe 10:277-285.
Soliva, CR., and H. Hess. 2007. Measuring methane emission of ruminants by in vitro and in vivo techniques. In: H. Makkar, and P. Vercoe, editors, Measuring methane production from ruminants. Springer, HOL. p. 15-31.
Soliva, CR., I. Hindrichsen, L. Meile, M. Kreuzer, and A. Machmüller. 2003. Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett. Appl. Microbiol. 37(1): 35-39.
Sosa, A., J. Galindo, y R. Bocourt. 2007. Metanogénesis ruminal: aspectos generales y manipulación para su control. Rev. Cubana Cienc. Agríc. 41:105-114.
Sparg, S., G. Light, and M. Staden. 2004. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94:219-243.
Takahashy, J. 2005. Emission of GhG from livestock production in Japan. Inter. Congress Series 1293:13-20.
Tan, Y., C. Sieo, N. Abdullah, J. Liang, X. Huang, and Y. Ho. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 169:185-193.
Ungerfeld, E., S. Rust, R. Burnett, M. Yokoyama, and J. Wang. 2005. Effects of two lipids on in vitro ruminal
methane production. Anim. Feed Sci. 119:179.
Van Soest, P.J. 1994. Nutritional ecology of the ruminant. 2a ed. Cornell University Press, USA.
Vargas, J.E. 1994. Caracterización de recursos forrajeros
disponibles en tres agroecosistemas del Valle del Cauca. Tesis MSc., Ponti cia Universidad Javeriana, Bogotá, COL.
Vargas, J., E. Cárdenas, M. Pabón, y J. Carulla. 2012. Emisión de metano entérico en rumiantes en pastoreo. Arch. Zootec. 61:51-66.
Verdecia, D., J. Ramírez, I. Leonard, Y. Álvarez, Y. Bazán, R. Bodas, S. Andrés, J. Álvarez, F. Giráldez, y S. López. 2011. Calidad de la Tithonia diversifolia en una zona del Valle del Cauto. REDVET 12(5). http://www.veterinaria.org/revistas/redvet/n050511/051113.pdf (consultado 10 jul. 2015).
Waghorn, G. 2008. Bene cial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-progress and challenges. Anim. Feed Sci. Technol. 147:116-139.
Wallace, R.J. 2004. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 63:621-629.
Wheeler, D., S. Ledgard, and C. DeKlein. 2008. Using the OVERSEER nutrient budget model to estimate on- farm greenhouse gas emissions. Austr. J. Exp. Agric. 48:99-103.
Woodward, S., G. Waghorn, and N. Thomson. 2006. Supplementing dairy cows with oils to improve performance and reduce methan? does it work. NZSAP 66:176-181.
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).