Herbicidal activity of three natural products on four weed species

Authors

  • Mary Pamela Portuguez-García Universidad de Costa Rica, Estación Experimental Fabio Baudrit Moreno, Alajuela, Costa Rica. https://orcid.org/0000-0002-3520-7699
  • Renán Agüero-Alvarado Universidad de Costa Rica, Estación Experimental Fabio Baudrit Moreno, Alajuela, Costa Rica. https://orcid.org/0000-0001-9053-9998
  • María Isabel González-Lutz Universidad de Costa Rica, School of Statistics. San Jose, Costa Rica

DOI:

https://doi.org/10.15517/am.v32i3.41394

Keywords:

natural herbicides, glufosinate, d-limonene, pine extract, thyme extract

Abstract

Introduction. Certain naturally derived substances may have herbicidal activity on some weeds species. Objective. To evaluate the efficacy of three substances of natural origin for the control of four weed species and to compare it with the effect of a synthetic broad-spectrum herbicide. Materials and methods. In February 2017, an experiment was conducted in a greenhouse at the Fabio Baudrit Moreno Agricultural Experiment Station, Universidad de Costa Rica. Three commercial products of natural origin based on: 55 % d-limonene, 15 % pine extract (Pinus sp.) and 23 % thyme extract (Thymus vulgaris) were evaluated; additionally, a product of synthetic origin, gluphosinate ammonium 14 SL, was evaluated. A none treated check was included. These were sprayed on seedlings of Bidens pilosaAmaranthus sp., Echinochloa colona and Rottboellia cochinchinensisResults. The seedlings sprayed with the natural herbicides showed symptoms at two hours, but their final efficacy varied among species. Eight-days after spraying, d-limonene was more effective than all other treatments, showing damage ratings higher than 4.25 in all species. Pine and thyme extracts were not effective on B. pilosa. Pine extract caused greater damage on Amaranthus sp, E. colona, and R. cochinchinensis, while the thyme extract caused greater damage on Amaranthus sp and R. cochinchinensis. The synthetic herbicide gluphosinate showed significant damage on all four species. Conclusions. The commercial products of natural origin used had herbicidal activity on the four weed species tested.

Downloads

Download data is not yet available.

References

Agro Research International. (2020). Thyme Guard®: Bactericida, fungicida e insecticida para uso en todos los cultivos alimenticios y no alimenticios. Agro Research International. https://www.agroresearchinternational.com/es/thyme-guard

Amri, I., Hamrouni, L., Hanana, M., & Jamoussi, B. (2013). Reviews on phytotoxic effects of essential oils and their individual components: news approach for weeds management. International Journal of Applied Biology and Pharmaceutical Technology, 4, 96–114.

Avenger. (s.f). Welcome to Avenger® organics! Avenger Products, LLC. http://www.avengerorganics.com/

Bailey, K. L. (2014). The bioherbicide approach to weed control using plant pathogens. In D. P. Abrol (Ed.), Integrated Pest Management (pp. 245-266). Academic Press. https://doi.org/10.1016/B978-0-12-398529-3.00014-2

Bayer AG. (2020). Basta® 14 SL. Bayer CropScience. https://www.sag.gob.cl/sites/default/files/basta_14_sl_01-04-2020.pdf

Bhowmik, P. C., & Inderjit, D. (2003). Challenges and opportunities in implementing allelopathy for natural weed management. Crop protection, 22(4), 661–671. https://doi.org/10.1016/S0261-2194(02)00242-9

Blanco, Y. (2006). La utilización de la alelopatía y sus efectos en diferentes cultivos agrícolas. Cultivos Tropicales, 27(3), 5–16. https://www.redalyc.org/pdf/1932/193215825001.pdf

Castillo, M. D. P., & Gómez, R. (2016). Efecto de la esterilización del suelo con vapor de agua sobre semillas de malezas. Agronomía Mesoamericana, 27(2), 409–413. https://doi.org/10.15517/am.v27i2.21286

Dayan, F. E., Cantrell, C. L., & Duke, S. O. (2009). Natural products in crop protection. Bioorganic & Medicinal Chemistry, 17(12), 4022–4034. https://doi.org/10.1016/j.bmc.2009.01.046

Dayan, F. E., & Duke, S. O. (2014). Natural compounds as next-generation herbicides. Plant Physiology, 166(3), 1090–1105. https://doi.org/10.1104/pp.114.239061

Dayan, F. E., Owens, D. K., Watson, S. B., Asolkar, R. N., & Boddy, L. G. (2015). Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action. Frontiers in Plant Science, 6, 222, 1–11. https://doi.org/10.3389/fpls.2015.00222

Dotolo, V. (1983). Pesticides containing D-limonene. (U.S. Patent No 4,379,168). PubChem. https://pubchem.ncbi.nlm.nih.gov/patent/US-4379168-A

Duke, S. O., & Lydon, J. (1987). Herbicides from natural compounds. Weed technology, 1(2), 122-128. https://doi.org/10.1017/S0890037X00029304

Duke, S. O., Romagni, J. G., & Dayan, F. E. (2000). Natural products as sources for new mechanisms of herbicidal action. Crop Protection, 19(8–10), 583–589. https://doi.org/10.1016/S0261-2194(00)00076-4

Enlasa. (s.f.) Pegador RP 10 SL. Grupo Enlasa productos. https://grupoenlasa.com/pegador-rp-10-sl/

Hernández, E. A., & Álvarez, R. (2008). Uso de los extractos acuosos del pino macho (Pinus caribaea Morelet) en el control de las malezas en cafetales bajo sombra (Accession No. 3194). Fitosanidad, 12(3), 184. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=pubs.xis&method=post&formato=2&cantidad=1&expresion=mfn=002424

Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57–65. https://doi.org/10.1016/j.cropro.2015.03.004

Jiménez-Ferrer, L. J., Valdés, D., & Álvarez, R. (2006). Efecto alelopático de Pinus caribaea en la germinación de arvenses en casas de cultivo protegido. Centro Agrícola, 33(4), 79. http://cagricola.uclv.edu.cu/descargas/pdf/V33-Numero_4/cag144061519.pdf

Masschelein, L. (2004). Les solventes. Centro Nacional de Conservación y Restauración. http://www.ibermuseos.org/wp-content/uploads/2020/05/los-solventes-chi.pdf

Messerschmidt, O., & Jankauskas, J. (2012). U.S. Patent No. 8,153,561. U.S. Patent and Trademark Office.

Sandral, G. A., Dear, B. S., Pratley, J. E., & Cullis, B. R. (1997). Herbicide dose rate response curves in subterranean clover determined by a bioassay. Australian Journal of Experimental Agriculture, 37(1), 67–74. https://doi.org/10.1071/EA96067

Shrestha, A., Moretti, M., & Mourad, N. (2012). Evaluation of thermal implements and organic herbicides for weed control in a nonbearing almond (Prunus dulcis) orchard. Weed Technology, 26(1), 110–116. https://doi.org/10.1614/WT-D-11-00083.1

Skat orgánico. (s.f.). Riso-fort. Skat limitada. http://www.skatlimitada.cl/

Tworkoski, T. (2002). Herbicide effects of essential oils. Weed Science, 50(4), 425–431. https://doi.org/10.1614/0043-1745(2002)050[0425:HEOEOfont>2.0.CO;2

Vaid, S., Batish, D. R., Singh, H. P., & Kohli, R. K. (2011). Phytotoxicity of limonene against Amaranthus viridis L. Bioscan, 6(1), 163–165.

Valverde, B. E., & Heap, I. M. (2009, noviembre). El estado actual de la resistencia a herbicidas en el mundo (Serie Actas). Instituto de Investigaciones Agropecuarias. Recuperado el 13 marzo, 2021, de https://biblioteca.inia.cl/bitstream/handle/123456789/8572/NR36351.pdf?sequence=1&isAllowed=y

Xuan, T. D., Shinkichi, T., Hong, N. H., Khanh, T. D., & Min, C. I. (2004). Assessment of phytotoxic action of Ageratum conyzoides L. (billy goat weed) on weeds. Crop Protection, 23(10), 915–922. https://doi.org/10.1016/j.cropro.2004.02.005.

Published

2021-09-01

How to Cite

Portuguez-García, M. P., Agüero-Alvarado, R., & González-Lutz, M. I. (2021). Herbicidal activity of three natural products on four weed species. Agronomía Mesoamericana, 32(3), 991–999. https://doi.org/10.15517/am.v32i3.41394

Most read articles by the same author(s)

1 2 3 > >>