Estimation of soil moisture through multiple linear regressions in Llano Brenes, Costa Rica
DOI:
https://doi.org/10.15517/am.v33i2.47872Keywords:
soil water content, Coffea, tropical zoneAbstract
Introduction. Soil moisture is a very important variable in the water supply for agriculture and it is its main resource. However, its field measurement usually has limitations, so its prediction is necessary for various agricultural planning and research activities. Objective. To predict daily soil moisture at the crop scale from meteorological information through multiple linear regression models. Materials and methods. The study was carried out in Llano Brenes, Alajuela, Costa Rica. Time domain reflectometry (TDR) sensors were installed and soil moisture information was recorded every twenty minutes from November 2018 to December 2019. The soil was classified at the taxonomic level as Lithic Ustorthents, in a farm with coffee cultivation in production. Undisturbed soil samples were taken for TDR calibration and a temporal stability analysis was performed. The first model (RLM1) was a multiple linear regression with meteorological variables, in the second model (RLM2) in addition to the meteorological variables, the precipitation was separated into sub-periods which were introduced as dummy variables, while the third model (PCA) consisted of a main component analysis and a linear regression model. Results. The RLM2 (R2 = 0.838) and PCA (R2 = 0.823) models performed better than the RLM1 model (R2 = 0.540). However, the RLM2 model was considered more useful due to its simplicity and the fact that it presented the best goodness-of-fit indicators. Conclusion. The linear regression models with meteorological variables allowed estimating soil moisture, because it tends to follow seasonal patterns and variations in precipitation, as observed in the RLM2 with the separation of sub-periods.
Downloads
References
Amarasinghe, U. A., Hoanh, C. T., D’haeze, D., & Hung, T. Q. (2015). Toward sustainable coffee production in Vietnam: More coffee with less water. Agricultural Systems, 136, 96−105. https://doi.org/10.1016/j.agsy.2015.02.008
Antonucci, F., Pallottino, F., Costa, C., Rimatori, V., Giorgi, S., Papetti, P., & Menesatti, P. (2011). Development of a rapid soil water content detection technique using active infrared thermal methods for in-field applications. Sensors, 11(11), 10114−10128. https://doi.org/10.3390/s111110114
Bishara, A. J., & Hittner, J. B. (2017). Confidence intervals for correlations when data are not normal. Behavior Research Methods, 49, 294−309. https://doi.org/10.3758/s13428-016-0702-8
Brocca, L., Ciabatta, L., Massari, C., Camici, S., & Tarpanelli, A. (2017). Soil moisture for hydrological applications: Open questions and new opportunities. Water, 9(2), Article 140. https://doi.org/10.3390/w9020140
Brocca, L., Melone, F., Moramarco, T., & Morbidelli, R. (2009). Soil moisture temporal stability over experimental areas in Central Italy. Geoderma, 148(3−4), 364−374. https://doi.org/10.1016/j.geoderma.2008.11.004
Brocca, L., Melone, F., Moramarco, T., & Morbidelli, R. (2010). Spatial-temporal variability of soil moisture and its estimation across scales. Water Resources Research, 46(2), Article 8016. https://doi.org/10.1029/2009WR008016
Campbell Sci. (2020). CS616 and CS625 water content reflectometers. Campbell Scientific, Inc.
Campbell Sci. Inc. (2016). CR800 Series Dataloggers. Campbell Scientific, Inc.
Chen, L., Messing, I., Zhang, S., Fu, B., & Ledin, S. (2003). Land use evaluation and scenario analysis towards sustainable planning on the Loess Plateau in China—Case study in a small catchment. CATENA, 54(1−2), 303−316. https://doi.org/10.1016/S0341-8162(03)00071-7
Chuenchooklin, S., Pangnakorn, U., & Soonthornnonda, P. (2019). Comparative study using the 2-hydrological models with the global weather in a small watershed, a case study in the upper Tha Chin River Basin, Thailand. World Journal of Engineering and Technology, 7(2), 21−26. https://doi.org/10.4236/wjet.2019.72B003
Crow, W. T., & Yilmaz, M. T. (2014). The Auto-Tuned Land Data Assimilation System (ATLAS). Water Resources Research, 50(1), 371−385. https://doi.org/10.1002/2013WR014550
de Queiroz, M. G., Freire da Silva, T. G., Zolnier, S., da Rosa Ferraz Jardim, A. M., de Alves Souza, C. A., do Nascimento Araújo Júnior, G., Florentino de Morais, J. E., & Bastos de Souza, L. S. (2020). Spatial and temporal dynamics of soil moisture for surfaces with a change in land use in the semi-arid region of Brazil. CATENA, 188, Article 104457. https://doi.org/10.1016/j.catena.2020.104457
Devore, J. L., & Berk, K. N. (2012). Modern mathematical statistics with applications. Springer. https://doi.org/10.1007/978-1-4614-0391-3
Dong, Y., Miller, S., & Kelley, L. (2020). Performance evaluation of soil moisture sensors in coarse- and fine-textured Michigan agricultural soils. Agriculture, 10(12), Article 598. https://doi.org/10.3390/agriculture10120598
Forkuor, G., Hounkpatin, O. K. L., Welp, G., & Thiel, M. (2017). High resolution mapping of soil properties using remote sensing variables in South-Western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS ONE, 12(1), Article e0170478. https://doi.org/10.1371/journal.pone.0170478
García, G., Brogioni, M., Venturini, V., Rodríguez, L., Walker, E., & Graciani, S. (2016). Determinación de la humedad de suelo mediante regresión lineal múltiple con datos TerraSAR-X. Revista de la Asociación Española de Teledetección, 46, 73−81. http:/doi.org/10.4995/raet.2016.4024
Heathman, G. C., Cosh, M. H., Han, E., Jackson, T. J., McKee, L., & McAfee, S. (2012). Field scale spatiotemporal analysis of surface soil moisture for evaluating point-scale in situ networks. Geoderma, 170, 195−205. https://doi.org/10.1016/j.geoderma.2011.11.004
Heathman, G. C., Starks, P. J., Ahuja, L. R., & Jackson, T. J. (2003). Assimilation of surface soil moisture to estimate profile soil water content. Journal of Hydrology, 279(1−4), 1−17. https://doi.org/10.1016/S0022-1694(03)00088-X
Huang, X., Shi, Z. H., Zhu, H. D., Zhang, H. Y., Ai, L., & Yin, W. (2016). Soil moisture dynamics within soil profiles and associated environmental controls. CATENA, 136, 189−196. https://doi.org/10.1016/j.catena.2015.01.014
Instituto Meteorológico Nacional. (2017). Estudio de cuencas hidrográficas de Costa Rica. Cuenca río Jesús María. http://cglobal.imn.ac.cr/documentos/publicaciones/EstudioCuencas/EstudioCuencas-cuencaRioJesusMaria.pdf
Kargas, G., & Soulis, K. X. (2012). Performance analysis and calibration of a new low-cost capacitance soil moisture sensor. Journal of Irrigation and Drainage Engineering, 138(7), 632−641. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000449
Khan, M. A., Kakar, E., Baloch, D. M., & Azad, S. U. D. (2011). Calibration of Time Domain Reflectometry (TDR) soil moisture point probe for two soils. Journal of Applied and Emerging Sciences, 2(1), 19−26.
Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233−241. https://doi.org/10.1029/1998WR900018
Martínez-Fernández, J., & Ceballos, A. (2005). Mean soil moisture estimation using temporal stability analysis. Journal of Hydrology, 312(1−4), 28−38. https://doi.org/10.1016/j.jhydrol.2005.02.007
Masarirambi, M. T., Chingwara, V., & Shongwe, V. D. (2009). The effect of irrigation on synchronization of coffee (Coffea arabica L.) flowering and berry ripening at Chipinge, Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 34(13), 786−789. https://doi.org/10.1016/j.pce.2009.06.013
McKenzie, N., & Austin, M. P. (1993). A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation. Geoderma, 57(4), 329−355. https://doi.org/10.1016/0016-7061(93)90049-Q
Mckenzie, N. J., & Macleod, D. A. (1989). Relationships between soil morphology and soil properties relevant to irrigated and dryland agriculture. Soil Research, 27(2), 235−258. https://doi.org/10.1071/sr9890235
McKenzie, N. J., & Ryan, P. J. (1999). Spatial prediction of soil properties using environmental correlation. Geoderma, 89(1), 67−94. https://doi.org/10.1016/S0016-7061(98)00137-2
McKenzie, N., Smettem, J., & Ringrose-Voase, A. J. (1991). Evaluation of methods for inferring air and water properties of soils from field morphology. Australian Journal of Soil Research, 29(5), 587−602. https://doi.org/10.1071/SR9910587
Mojid, M. A., & Cho, H. (2002). Response of the core and shield rods of time-domain reflectometry probe to transverse soil-water content heterogeneity. Journal of Hydrology, 262(1−4), 21−27. https://doi.org/10.1016/S0022-1694(01)00604-7
Molina-Campos, E. (2015). Determinación y cuantificación de la tasa de erosión laminar en cafetales ubicados en la cuenca del Río Jesús María [Tesis de Grado, no publicada]. Universidad de Costa Rica.
Montoani Silva, B., Oliveira, G. C., Serafim, M. E., Silva, É. A., Gontijo Guimarães, P. T., Batista Melo, L. B., Darrell Norton, L., & Curi, N. (2019). Soil moisture associated with least limiting water range, leaf water potential, initial growth and yield of coffee as affected by soil management system. Soil and Tillage Research, 189, 36−43. https://doi.org/10.1016/j.still.2018.12.016
Naranjo, M. E., & Ataroff, M. (2015). Calibración de equipos TDR para su uso en suelos no disturbados. Interciencia, 40(6), 416−422.
Nash, J., & Sutcliffe, J. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282−290. https://doi.org/10.1016/0022-1694(70)90255-6
Parker, R. I. (2006). Increased reliability for single-case research results: Is the bootstrap the answer? Behavior Therapy, 37(4), 326−338. https://doi.org/10.1016/j.beth.2006.01.007
Qiu, Y., Fu, B., Wang, J., & Chen, L. (2001). Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau, China. Journal of Arid Environments, 49(4), 723−750. https://doi.org/10.1006/jare.2001.0828
Qiu, Y., Fu, B., Wang, J., & Chen, L. (2003). Spatiotemporal prediction of soil moisture content using multiple-linear regression in a small catchment of the Loess Plateau, China. CATENA, 54(1-2), 173−195. https://doi.org/10.1016/S0341-8162(03)00064-X
Qiu, Y., Fu, B., Wang, J., Chen, L., Meng, Q., & Zhang, Y. (2010). Spatial prediction of soil moisture content using multiple-linear regressions in a gully catchment of the Loess Plateau, China. Journal of Arid Environments, 73(2), 208−220. https://doi.org/10.1016/j.jaridenv.2009.08.003
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Robinson, D. A., Jones, S. B., Wraith, J. M., Or, D., & Friedman, S. P. (2003). A Review of advances in dielectric and electrical conductivity measurement in soils using Time Domain Reflectometry. Vadose Zone Journal, 2(4), 444−475. https://doi.org/10.2136/vzj2003.4440
Russell, C. J., & Dean, M. A. (2000). To log or not to log: bootstrap as an alternative to the parametric estimation of moderation effects in the presence of skewed dependent variables. Organizational Research Methods, 3(2), 166−185. https://doi.org/10.1177%2F109442810032002
Sacardi Biudes, M., Vourlitis, G. L., Gomes Machado, N., Zanella de Arruda, P. H., Rodrigues Neves, G. A., de Almeida Lobo, F., Usher Neale, C. M., & de Souza Nogueira, J. (2015). Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso, Brazil. Agricultural and Forest Meteorology, 202, 112−124. https://doi.org/10.1016/j.agrformet.2014.12.008
Soil Survey Staff. (2014). Keys to soil taxonomy. United States Department of Agriculture.
Sun, F., Lü, Y., Wang, J., Hu, J., & Fu, B. (2015). Soil moisture dynamics of typical ecosystems in response to precipitation: A monitoring-based analysis of hydrological service in the Qilian Mountains. CATENA, 129, 63−75. https://doi.org/10.1016/j.catena.2015.03.001
Tebbs, E., Gerard, F., Petrie, A., & De Witte, E. (2016). Emerging and potential future applications of satellite-based soil moisture products. In P. K. Srivastava, G. P. Petropoulos, & Y. H. Kerr (Eds.), Satellite Soil Moisture Retrieval (Chapter 19, pp. 379−400). Elsevier. https://doi.org/10.1016/B978-0-12-803388-3.00019-X
Udawatta, R. P., Anderson, S. H., Motavalli, P. P., & Garrett, H. E. (2011). Calibration of a water content reflectometer and soil water dynamics for an agroforestry practice. Agroforestry Systems, 82(1), 61−75. https://doi.org/10.1007/s10457-010-9362-3
Walker, J. P., Willgoose, G. R., & Kalma, J. D. (2004). In situ measurement of soil moisture: A comparison of techniques. Journal of Hydrology, 293(1−4), 85−99. https://doi.org/10.1016/j.jhydrol.2004.01.008
Waseem, M., Mani, N., Andiego, G., & Usman, M. (2017). A review of criteria of fit for hydrological models. International Research Journal of Engineering and Technology, 4(11), 1765−1772.
Webster, R., & McBratney, A. B. (1989). On the Akaike information criterion for choosing models for variograms of soil properties. Journal of Soil Science, 40(3), 493−496. https://doi.org/10.1111/j.1365-2389.1989.tb01291.x
Were, K., Bui, D. T., Dick, Ø. B., & Singh, B. R. (2015). A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52, 394−403. https://doi.org/10.1016/j.ecolind.2014.12.028
Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184−194. https://doi.org/10.1080/02723646.1981.10642213
Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’Donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 90(C5), 8995−9005. https://doi.org/10.1029/JC090iC05p08995
Zaman, B., & McKee, M. (2014). Spatio-temporal prediction of root zone soil moisture using multivariate relevance vector machines. Open Journal of Modern Hydrology, 4(3), 80−90. https://doi.org/10.4236/ojmh.2014.43007
Zheng, W., Zhangzhong, L., Zhang, X., Wang, C., Zhang, S., Sun, S., & Niu, H. (2017, August 12-15). A review on the soil moisture prediction model and its application in the information system [Conferencia internacional]. International Conference on Computer and Computing Technologies in Agriculture, Jilin, China. https://doi.org/10.1007/978-3-030-06137-1_32
Zucco, G., Brocca, L., Moramarco, T., & Morbidelli, R. (2014). Influence of land use on soil moisture spatial–temporal variability and monitoring. Journal of Hydrology, 516, 193−199. https://doi.org/10.1016/j.jhydrol.2014.01.04
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).