Energy analysis in dairies of the Argentina Pampa´s region. Part 2. Energy accounting
DOI:
https://doi.org/10.15517/am.v33i3.49389Keywords:
sustainability, dairy farm production, animal stock rate, feed supplementationAbstract
Introduction. Agricultural activity is a user and producer of energy, which can be evaluated through energy analysis, which also relates concepts of physics, biochemistry, and biology. Objectives. To evaluate from an expanded energy approach, different commercial models of primary milk production. Materials and methods. The study was based on retrospective data from nine dairy farms in the Pampa´s Argentina Region, between July 2014 and June 2015. Four indicators were calculated: energy output (EE), energy input (IE), energy efficiency (EE/IE), and anergy (A). Results. The highest EE were based on net primary productivity, under high supplementation conditions. The average IE was 239.9 GJ/ha/year, a range in which the systems with medium stocking rates were aligned. Water (67 %) was the main contributor. The efficiency (EE/IE) showed marked variability, based on the IE; although the vegetal biomass was the main cause of EE fluctuation, since the contributions of milk and meat did not differ between systems. The remaining energy stock (storage) was not used within the system, nor did it contribute to the system through its export, so it was defined as a fraction without practical use (A). Conclusions. The energy analysis was a valid tool to evaluate the sustainability of the systems, it was applied in production models with different intensification strategies. When including vegetal biomass, the highest energy outputs (EE) were seen in models with high supplementation, but in the dairy subsystem taken individually, animal stocking rate was associated with higher EE (due to increased productivity) and higher IE, due to the increase of water consumption.
Downloads
References
Basso, B., & Ritchie, J. T. (2005). Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6- year maize-alfalfa rotation in Michigan. Agriculture, Ecosystems & Environment, 108(4), 329–341. https://doi.org/10.1016/j.agee.2005.01.011
Boadi, D., Benchaar, C., Chiquette, J., & Massé, D. (2004). Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science, 84(3), 319–335. https://doi.org/10.4141/A03-109
Bonel, B. A., Montico, S., Di Leo, N., Denoia, J. A., & Vilche, M. S. (2005). Análisis energético de las unidades de tierra en una cuenca rural. Revista FAVE - Ciencias Agrarias, 4(1-2), 37–47. https://doi.org/10.14409/fa.v4i1/2.1312
Cleveland, C. J. (1995). The direct and indirect use of fossil fuels and electricity in USA agriculture, 1910–1990. Agriculture, ecosystems & environment, 55(2), 111–121. https://doi.org/10.1016/0167-8809(95)00615-Y
Denoia, J., Bonel, B. , Montico, S., & Di Leo, N. (2008). Análisis de la gestión energética en sistemas de producción ganaderos. Revista FAVE- Ciencias Agrarias, 7(1–2), 43–56.
Flores-Aguilar, J. J., Vázquez-Rosales, R., Solano-Vergara, J. J., Aguirre-Flores, V., Flores-Pérez, F. I., Bahena-Galindo, M. E., Oliver-Guadarrama, R., Granjeno-Colín, A. E., & Orihuela-Truhillo, A. (2012). Efecto de fertilizante orgánico, inorgánico y su combinación en la producción de alfalfa y propiedades químicas del suelo. Terra Latinoamericana, 30(3), 213–220.
Fluck, R. C., & Baird, C. D. (1980). Agricultural energetic. Avi Publishing Company Inc.
Franzluebbers, A. J., & Francis, C. A. (1995). Energy output: input ratio of maize and sorghum management systems in eastern Nebraska. Agriculture, Ecosystems & Environment, 53(3), 271–278. https://doi.org/10.1016/0167-8809(94)00568-Y
Gaggiotti, M. C. (2008). Tabla de composición química de alimentos para rumiantes (1ª ed.). Ediciones INTA.
Gastaldi, L., Engler, P., Litwin, G., Centeno, A., Maekawa, M., & Cuatrin, A. (2016). Lechería Pampeana. Resultados productivos. Ejercicio 2014-2015. Instituto Nacional de Tecnología Agropecuaria. https://bit.ly/3bPcFVa
Gimenez, G. D. (2017). Sustentabilidad en lecherías de Argentina. Evaluación de la gestión de sustentabilidad en sistemas de producción primaria de leche en la región pampeana argentina. Editorial Académica Española.
Gimenez, G. D., Novaira, B. I., & Marini, P. R. (2022). Análisis Energético en lecherías de la Región Pampeana Argentina. Parte 1. Flujos de Energía. Agronomía Mesoamericana, 33(3), Artículo 49024. https://doi.org/10.15517/am.v33i3.49024
Guevara-Hernández, F., Rodríguez-Larramendi, L. A., Hernández-Ramos, M. A., Fonseca-Flores, M. A., Pinto-Ruiz, R., & Reyes-Muro, L. (2015). Eficiencia energética y económica del cultivo de maíz en la zona de amortiguamiento de la Reserva de la Biósfera “La Sepultura”, Chiapas, México. Revista Mexicana de Ciencias Agrícolas, 6(8), 1929–1941.
Heichel, G. H. (1980). Assessing the fossil energy of propagating agricultural crops. In D. Pimentel (Ed.), Handbook of energy utilization in agriculture (pp. 27–33). CRC Press.
Hermitte, E. M. (1904). Consideraciones generales sobre los combustibles argentinos con relación a sus poderes caloríferos y a la situación económica de los yacimientos. Repositorio Segemar. http://repositorio.segemar.gov.ar/308849217/866
Herrero, M. A., Carbó, L. I., Gil, S. B., & Menéndez, G. (2012). Consumo y eficiencia de energía fósil en tambos con diferentes niveles de intensificación. Revista Argentina de Producción Animal, 32(1), 22.
Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: water use by people as a function of their consumption pattern. Water Resource Management, 21, 35-48. https://doi.org/10.1007/s11269-006-9039-x
Institut d´Estudis de la Seguretat. (2010). Búsqueda y validación de parámetros de la carga de fuego en establecimientos. Anexo. Tablas. Institut d’Estudis de la Seguretat. https://www.tecnifuego.org/recursos/arxius/20100317_0955Anexo_IDES.pdf
International Dairy Federation. (2015). A common carbon footprint approach for the dairy sector. The IDF guide to standard life cycle assessment methodology (Bulletin 479). International Dairy Federation. https://bit.ly/3OGY5h6
Lassey, W. R., & Arias, C. L. (1972). Comunicación, cambio social y desarrollo agrícola en el área del lago de Izábal, Guatemala. Instituto Interamericano de Cooperación para la Agricultura.
Leach, G. (1975). Energy and food production. Food Policy, 1(1), 62-73. https://doi.org/10.1016/0306-9192(75)90009-3
Litwin, G., Giménez, G., Álvarez, H., Esnaola, I., Centeno, A., Moretto, M., Maekawa, M., Butarelli, S., Engler, P., Spilj, G., Almada, G., Ferrer, J., Tieri, M., & Charlón, V. (2017). Propuesta para medir la sustentabilidad de tambos en la región pampeana. Revista Técnica Planteos Ganaderos, 2017, 82–86. https://bit.ly/3a9ToNP
Llanos, E., Astigarraga, L., Jacques, R., & Picasso, V. (2013). Eficiencia energética en sistemas lecheros del Uruguay. Agrociencia Uruguay, 17(2), 99–109.
Marchioro, N. P. X. (1985). Balanço ecoenergético: uma metodologia de análise de sistemas agrícolas. Treinamento em análise ecoenergética de sistemas agrícolas, 1, 24–40.
McCaughey, W. P., Wittenberg, K., & Corrigan, D. (1997). Methane production by steers on pasture. Canadian Journal of Animal Science, 77(3), 519–524. https://doi.org/10.4141/A96-137
Meul, M., Nevens, F., Reheul, D., & Hofman, G. (2007). Energy use efficiency of specialised dairy, arable and pig farms in Flanders. Agriculture, Ecosystems and Environment, 119(1-2), 135–144. http://doi.org/10.1016/j.agee.2006.07.002
Montico, S., Di Leo, N., Bonel, B., & Denoia, J. (2007). Gestión de la energía en el sector rural. UNR Editora.
Paruelo, J. M., & Batista, W. (2006). El fllujo de energía en los ecosistemas. En M. van Esso (Ed.), Fundamentos de ecología. Su enseñanza con un enfoque novedoso (pp. 97–115). Editorial Facultad deAgronomía. https://www.agro.uba.ar/users/batista/EE/papers/paruelo.pdf
Pereira dos Santos, H., Serena Fontaneli, R., Spera, S. T., & Maldaner, G. L. (2011). Conversão e balanço de energia de sistemas de produção com integração lavoura-pecuária sob plantio direto. Pesquisa Agropecuária Brasileira, 46(10), 1193–1199. https://doi.org/10.1590/S0100-204X2011001000011
Pimentel, D. (1980). Energy inputs for the production, formulation, packaging, and transport of various pesticides. In D. Pimentel (Ed.), Handbook of energy utilization in agriculture (pp. 45–48). CRC Press.
Pimentel, D., Hurd, L. E., Bellotti, A. C., Forster, M. J., Oka, I. N., Sholes, O. D., & Whitman, R. J. (1973). Food production and energy crisis. Science, 182(4111), 443–449. https://doi.org/10.1126/science.182.4111.443
Rabier, F., Mignon, C., Lejeune, L., & Stilmant, D. (2010). Assessment of energy consumption pattern in a sample of Walloon livestock farming systems. En Grassland in a changing world. Grassland Science in Europe, 15, 121–123.
Rant, Z. (1956). Exergie, ein neues Wort für “Technische Arbeitsfähigkeit”. Forschung auf dem Gebiete des Ingenieurwesens, 22, 36–37.
Robertson, L. J., & Waghorn, G. C. (2002). Dairy industry perspectives on methane emissions and production from cattle fed pasture or total mixed rations in New Zealand. Proceedings of the New Zealand Society of Animal Production, 62, 213–218.
Rótolo, G. & Charlón, V. (2013, marzo 24-27). Evaluación ambiental de un sistema de producción intensivo de leche en la cuenca central de Argentina utilizando el análisis de ciclo de vida (ACV) expandido [Sesión de póster]. International Conference of LCA, Mendoza, Argentina. http://doi.org/10.13140/RG.2.1.4309.7842
Russell, J. (2002). Rumen microbiology and its role in ruminant nutrition. Cornell University.
Tieri, M. P., Charlón, V., Comerón, E., & Mascotti, M. (2017). La sustentabilidad de nuestros tambos. Estrategias productivas e indicadores ambientales. Boletín Lechería Sustentable, 2(5), 1–6. https://inta.gob.ar/sites/default/files/inta_boletin_lecheria_sustentable_n_5.pdf
Uhlin, H. E. (1999). Energy productivity of technological agriculture-lessons from the transition of Swedish agriculture. Agriculture, Ecosystems & Environment, 73(1), 63–81. https://doi.org/10.1016/S0167-8809(99)00002-X
Velázquez, E. (2011). Agua virtual, huella hídrica y el binomio agua-energía: repensando los conceptos. Universidad Pablo de Olavide. https://hispagua.cedex.es/sites/default/files/hispagua_documento/agua_virtual.pdf
Viglizzo, E. F., Frank, F. C., Carreño, L. V., Jobbágy, E. G., Pereyra, H., Clatt, J., Pincén, D., & Ricard, M. F. (2011). Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global Change Biology, 17(2), 959–973. https://doi.org/10.1111/j.1365-2486.2010.02293.x
Viglizzo, E. F., & Roberto, Z. E. (1997). El componente ambiental en la intensificación ganadera. Revista Argentina de Producción Animal, 17(3), 271–292.
Vigne, M., Vayssières, J., Lecomte, P., & Peyraud, J. -L. (2012). Evaluating the ability of current energy use assessment methods to study contrasting livestock production systems. Journal of Environmental Management, 112, 199–212. https://doi.org/10.1016/j.jenvman.2012.07.017
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).