The cryopreservation of the germplasm of livestock species: A step towards sustainability
DOI:
https://doi.org/10.15517/am.2025.61375Keywords:
Antioxidants, centrifugation, extender, reactive oxygen species, biodiversity conservationAbstract
Introduction. Climate change has led to the need to modify the way of production in livestock systems. Objective. Review the state of the art on the cryopreservation of sperm from livestock species and its possible repercussions on sustainable development. Development. Scientific articles from 2000 to 2024 were reviewed from Web of Science, Scopus and ScienceDirect. Sperm freezing can be considered as a way to optimize the reproduction of animals, however, during the process the formation of reactive oxygen species (ROS) can be stimulated, which promote lipid peroxidation of the membrane, which can cause damage. at a structural and molecular level that compromise the sperm functionality and the fertilizing capacity of the male gamete. The success of cryopreservation of sperm from livestock species can be improved by including extrinsic factors such as the addition of antioxidants, centrifugation or selection of the type of freezing. This reproductive biotechnology is associated with artificial insemination (AI) and the combination of these techniques has made it possible to optimize the profitability of livestock systems through continuous genetic improvement. Conclusions. The optimization of cryopreservation of the germplasm of species of zootechnical interest has allowed for an increase in the productivity and efficiency of livestock systems, as well as the possibility of species conservation, which are key factors to achieve sustainability.
Downloads
References
Agarwal, A., Varghese, A. C., & Sharma, R. K. (2009). Markers of oxidative stress and sperm chromatin integrity. In O. Park-Sarge, & T. Curry (Eds.), Methods in molecular biology (pp. 377–402). https://doi.org/10.1007/978-1-60327-378-7_24
Aitken, R. J., & Baker, M. A. (2006). Oxidative stress, sperm survival and fertility control. Molecular and Cellular Endocrinology, 250(1–2), 66–69. https://doi.org/10.1016/j.mce.2005.12.026
Akhter, S., Ansari, M. S., Rakha, B. A., Ullah, N., Andrabi, S. M. H., & Khalid, M. (2011). In Vitro Evaluation of liquid-stored buffalo semen at 5°C diluted in soya lecithin based extender (Bioxcell®), Tris-citric egg yolk, skim milk and egg yolk-citrate extenders. Reproduction in Domestic Animals, 46(1), 45–49. https://doi.org/10.1111/j.1439-0531.2009.01561.x
Akhter, S., Zubair, M., Mahmood, M., Andrabi, S. M. H., Hameed, N., Ahmad, E., & Saleemi, M. K. (2023). Effects of vitamins C and E in tris citric acid glucose extender on chilled semen quality of Kail ram during different storage times. Scientific Reports, 13(1), Article 18123. https://doi.org/10.1038/s41598-023-43831-2
Almubarak, A. M., Kim, W., Abdelbagi, N. H., Balla, S. E., Yu, I.-J., & Jeon, Y. (2021). Washing solution and centrifugation affect kinematics of cryopreserved boar semen. Journal of Animal Reproduction and Biotechnology, 36(2), 65–75. https://doi.org/10.12750/jarb.36.2.69
Androni, D. A., Dodds, S., Tomlinson, M., & Maalouf, W. E. (2021). Is pre-freeze sperm preparation more advantageous than post-freeze? Reproduction and Fertility, 2(1), 17–25. https://doi.org/10.1530/RAF-20-0041
Araya-Zúñiga, I., Sevilla, F., Barquero, V., & Valverde, A. (2023). The effect of extender, age, and bovine sexual status on the sperm kinematics. Agronomía Mesoamericana, 34(3), Article 52597. https://doi.org/10.15517/am.2023.52597
Arnold, D. M., Gray, C., Roth, T. L., Mitchell, S., & Graham, L. H. (2017). A simple, field-friendly technique for cryopreserving semen from Asian elephants (Elephas maximus). Animal Reproduction Science, 182, 84–94. https://doi.org/10.1016/j.anireprosci.2017.05.003
Atig, F., Kerkeni, A., Saad, A., & Ajina, M. (2017). Effects of reduced seminal enzymatic antioxidants on sperm DNA fragmentation and semen quality of Tunisian infertile men. Journal of Assisted Reproduction and Genetics, 34(3), 373–381. https://doi.org/10.1007/s10815-013-9936-x
Branco, C. S., Garcez, M. E., Pasqualotto, F. F., Erdtman, B., & Salvador, M. (2010). Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen. Cryobiology, 60(2), 235–237. https://doi.org/10.1016/j.cryobiol.2009.10.012
Brugnon, F., Ouchchane, L., Pons-Rejraji, H., Artonne, C., Farigoule, M., & Janny, L. (2013). Density gradient centrifugation prior to cryopreservation and hypotaurine supplementation improve post-thaw quality of sperm from infertile men with oligoasthenoteratozoospermia. Human Reproduction, 28(8), 2045–2057. https://doi.org/10.1093/humrep/det253
Bustani, G. S., & Baiee, F. H. (2021). Semen extenders: An evaluative overview of preservative mechanisms of semen and semen extenders. Veterinary World, 14(5), 1220–1233. https://doi.org/10.14202/vetworld.2021.1220-1233
Büyükleblebici, S., Tuncer, P. B., Bucak, M. N., Eken, A., Sariözkan, S., Taşdemir, U., & Endirlik, B. Ü. (2014). Cryopreservation of bull sperm: Effects of extender supplemented with different cryoprotectants and antioxidants on sperm motility, antioxidant capacity and fertility results. Animal Reproduction Science, 150(3–4), 77–83. https://doi.org/10.1016/j.anireprosci.2014.09.006
Carriço, C., Barbas, J. P., Pimenta, J., & Simões, J. (2023). Effect of in vitro addition of melatonin and glutathione on seminal parameters of rams in diluted semen and after thawing. Veterinary Sciences, 10(7), Article 446. https://doi.org/10.3390/vetsci10070446
Castillo, A., Lenzi, C., Pirone, A., Baglini, A., Cerolini, S., Iaffaldano, N., Sartore, S., Russo, C., Schiavone, A., & Di Cossato, M. M. F. (2021). Optimization of a protocol for the cryopreservation of sperm in pellets for the common pheasant (Phasianus colchicus mongolicus). Animals, 11(8), Article 2472. https://doi.org/10.3390/ani11082472
Catalán, J., Yánez-Ortiz, I., Torres-Garrido, M., Ribas-Maynou, J., Llavanera, M., Barranco, I., Yeste, M., & Miró, J. (2024). Impact of seminal plasma antioxidants on DNA fragmentation and lipid peroxidation of frozen–thawed horse sperm. Antioxidants, 13(3), Article 332. https://doi.org/10.3390/antiox13030322
Catalán, J., Yánez-Ortiz, I., Tvarijonaviciute, A., González-Arostegui, L. G., Rubio, C. P., Yeste, M., Miró, J., & Barranco, I. (2022). Impact of seminal plasma antioxidants on donkey sperm cryotolerance. Antioxidants, 11(2), Article 417. https://doi.org/10.3390/antiox11020417
ChaithraShree, A. R., Ingole, S. D., Dighe, V. D., Nagvekar, A. S., Bharucha, S. V., Dagli, N. R., Kekan, P. M., & Kharde, S. D. (2020). Effect of melatonin on bovine sperm characteristics and ultrastructure changes following cryopreservation. Veterinary Medicine and Science, 6(2), 177–186. https://doi.org/10.1002/vms3.224
Champroux, A., Torres-Carreira, J., Gharagozloo, P., Drevet, J. R., & Kocer, A. (2016). Mammalian sperm nuclear organization: Resiliencies and vulnerabilities. Basic and Clinical Andrology, 26, Article 17 https://doi.org/10.1186/s12610-016-0044-5
Chung, E. L. T., Nayan, N., Nasir, N. S. M., Hing, P. S. A., Ramli, S., Rahman, M. H. A., & Kamalludin, M. H. (2019). Effect of honey as an additive for cryopreservation on bull semen quality from different cattle breeds under tropical condition. Journal of Animal Health and Production, 7(4), 171–178. https://doi.org/10.17582/journal.jahp/2019/7.4.171.178
Cojkic, A., Hansson, I., Johannisson, A., Axner, E., & Morrell, J. M. (2024). Single layer centrifugation as a method for bacterial reduction in bull semen for assisted reproduction. Veterinary Research Communications, 48(1), 39–48. https://doi.org/10.1007/s11259-023-10178-y
Córdova-Izquierdo, A., Saltijeral Oaxaca, J., Ruiz Lang, G., Xolalpa Campos, V., Cortés Suárez, S., Peña Betancourt, S. D., Córdova-Jiménez, C., Córdova-Jiménez, M., Méndez Mendoza, M., Crispín Huerta, R., Juárez Mosqueda, M., & Guerra Liera, J. E. (2010). Estrés oxidativo en gametos-Oxidative stress in gametes. Revista Electronica Veterinaria, 11(7), 1–32. https://www.veterinaria.org/index.php/REDVET/issue/view/1
Curry, M. R. (2000). Cryopreservation of semen from domestic livestock. Reviews of Reproduction, 5, 46–52.
da Silva, A. (2014). El plan de acción mundial de la FAO sobre los recursos zoogenéticos y su aplicación en Latinoamérica y el Caribe. Revista Cubana de Ciencia Agrícola, 48(1), 35–41.
Di Iorio, M., Esposito, S., Rusco, G., Roncarati, A., Miranda, M., Gibertoni, P. P., Cerolini, S., & Iaffaldano, N. (2019). Semen cryopreservation for the Mediterranean brown trout of the Biferno River (Molise-Italy): Comparative study on the effects of basic extenders and cryoprotectants. Scientific Reports, 9, Article 9703. https://doi.org/10.1038/s41598-019-45006-4
Ellerbrock, R. E., Prell, M. J., Stewart, J. L., Bojko, M. S., Lima, F. S., & Canisso, I. F. (2017). Comparison of Centrifugation and Noncentrifugation Methods to Cryopreserve Stallion Epididymal Semen. Journal of Equine Veterinary Science, 50, 27–32. https://doi.org/10.1016/j.jevs.2016.11.005
El-Seadawy, I. E., Kotp, M. S., El-Maaty, A. M. A., Fadl, A. M., El-Sherbiny, H. R., & Abdelnaby, E. A. (2022). The impact of varying doses of moringa leaf methanolic extract supplementation in the cryopreservation media on sperm quality, oxidants, and antioxidant capacity of frozen-thawed ram sperm. Tropical Animal Health and Production, 54(6), Article 344. https://doi.org/10.1007/s11250-022-03344-y
Esteso, M. C., Soler, A. J., Fernández-Santos, M. R., Quintero-Moreno, A. A., & Garde, J. J. (2006). Functional significance of the sperm head morphometric size and shape for determining freezability in Iberian red deer (Cervus elaphus hispanicus) epididymal sperm samples. Journal of Andrology, 27(5), 662–670. https://doi.org/10.2164/jandrol.106.000489
Félix, F., Oliveira, C. C. V., & Cabrita, E. (2021). Antioxidants in fish sperm and the potential role of melatonin. Antioxidants, 10(1), 1–29. https://doi.org/10.3390/antiox10010036
Ford, W. C. L. (2004). Regulation of sperm function by reactive oxygen species. Human Reproduction Update, 10(5), 387–399. https://doi.org/10.1093/humupd/dmh034
Fumuso, F. G., Bertuzzi, M. L., Velásquez González, N., Miragaya, M. H., & Carretero, M. I. (2021). Cryopreservation of llama semen using a combination of permeable cryoprotectants. Reproduction in Domestic Animals, 56(7), 958–964. https://doi.org/10.1111/rda.13937
García, W., Maxi, E., Macedo, V., Ampuero, E., & Malaga, J. (2021). Cryopreservation of alpaca spermatozoa obtained via post copula in a tris extender with egg yolk from three avian species. Spermova, 11(1), 11–16. https://doi.org/10.18548/ASPE/0009.02
Gloria, A., Carluccio, A., Wegher, L., Robbe, D., Befacchia, G., & Contri, A. (2016). Single and double layer centrifugation improve the quality of cryopreserved bovine sperm from poor quality ejaculates. Journal of Animal Science and Biotechnology, 7, Article 30. https://doi.org/10.1186/s40104-016-0088-6
Gomes-Alves, S., Alvarez, M., Nicolas, M., Lopez -Urueña, E., Martínez-Rodríguez, C., Borragan, S., de Paz, P., & Anel, L. (2014). Use of commercial extenders and alternatives to prevent sperm agglutination for cryopreservation of brown bear semen. Theriogenology, 82(3), 469–474. https://doi.org/10.1016/j.theriogenology.2014.05.015
Gül, A., Şahinler, N., Onal, A. G., Hopkins, B. K., & Sheppard, W. S. (2017). Effects of diluents and plasma on honey bee (Apis mellifera L.) drone frozen-thawed semen fertility. Theriogenology, 101, 109–113. https://doi.org/10.1016/j.theriogenology.2017.06.020
Gulov, A. N., Berezin, A. S., Larkina, E. O., Saltykova, E. S., & Kaskinova, M. D. (2023). Creation of a biobank of the sperm of the honey bee drones of different subspecies of Apis mellifera L. Animals, 13(23), Article 3684. https://doi.org/10.3390/ani13233684
Gürler, H., Malama, E., Heppelmann, M., Calisici, O., Leiding, C., Kastelic, J. P., & Bollwein, H. (2016). Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology, 86(2), 562–571. https://doi.org/10.1016/j.theriogenology.2016.02.007
Gutiérrez-Cepeda, L., Fernández, A., Crespo, F., Ramírez, M. Á., Gosálvez, J., & Serres, C. (2012). The effect of two pre-cryopreservation single layer colloidal centrifugation protocols in combination with different freezing extenders on the fragmentation dynamics of thawed equine sperm DNA. Acta Veterinaria Scandinavica, 54, Article 72 https://doi.org/10.1186/1751-0147-54-72
He, W. H., Zhai, X. H., Duan, X. J., & Di, H. S. (2020). Effect of resveratrol treatment on apoptosis and apoptotic pathways during boar semen freezing. Journal of Zhejiang University: Science B (Biomedicine & Biotechnology), 21(6), 485–494. https://doi.org/10.1631/jzus.B1900520
Hermes, R., Hildebrandt, T. B., & Göritz, F. (2018). Cryopreservation in rhinoceros—setting a new benchmark for sperm cryosurvival. PLoS ONE, 13(7), Article e0200154. https://doi.org/10.1371/journal.pone.0200154
Hezavehei, M., Sharafi, M., Kouchesfahani, H. M., Henkel, R., Agarwal, A., Esmaeili, V., & Shahverdi, A. (2018). Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reproductive BioMedicine Online, 37(3), 327–339. https://doi.org/10.1016/j.rbmo.2018.05.012
Hidalgo, M., Diaz-Jimenez, M., Consuegra, C., Pereira, B., & Dorado, J. (2020). Vitrification of donkey sperm: Is it better using permeable cryoprotectants? Animals, 10(9), Article 1462. https://doi.org/10.3390/ani10091462
Hoogewijs, M., Morrell, J., Van Soom, A., Govaere, J., Johannisson, A., Piepers, S., De Schauwer, C., De Kruif, A., & De Vliegher, S. (2011). Sperm selection using single layer centrifugation prior to cryopreservation can increase thawed sperm quality in stallions. Equine Veterinary Journal, 43(Supp. 40), 35–41. https://doi.org/10.1111/j.2042-3306.2011.00489.x
Hristov, A. N., Ott, T., Tricarico, J., Rotz, A., Waghorn, G., Adesogan, A., Dijkstra, J., Montes, F., Oh, J., Kebreab, E., Oosting, S. J., Gerber, P. J., Henderson, B., Makkar, H. P. S., & Firkins, J. L. (2013). SPECIAL TOPICS-Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Journal of Animal Science, 91(11), 5095–5113. https://doi.org/10.2527/jas.2013-6585
Hungerford, A., Bakos, H. W., & Aitken, R. J. (2023). Sperm cryopreservation: current status and future developments. Reproduction, Fertility, and Development, 35(3), 265–281. https://doi.org/10.1071/RD22219
Ibrahim, S., Talha, N. A. H., Kim, J., Jeon, Y., & Yu, I. (2022). Cryopreservation of Siberian tiger (Panthera tigris altaica) epididymal spermatozoa: pilot study of post-thaw sperm characteristics. Journal of Animal Reproduction and Biotechnology, 37(2), 130–135. https://doi.org/10.12750/jarb.37.2.130
Kaeoket, K., & Chanapiwat, P. (2023). The beneficial effect of resveratrol on the quality of frozen-thawed boar sperm. Animals, 13(18), Article 2829. https://doi.org/10.3390/ani13182829
Kajabova, S., Silva, H., Valadao, L., & Moreira, F. (2020). Artificial insemination and cryopreservation of boar semen: current state and problematics. Open Science Journal, 5(2), 1–12. https://osjournal.org/ojs/index.php/OSJ/article/view/2353/0
Kalwar, Q., Chu, M., Korejo, R. A., Soomro, H., & Yan, P. (2022). Cryopreservation of yak semen: A comprehensive treview. Animals, 12(24), Article 3451. https://doi.org/10.3390/ani12243451
Khan, I. M., Cao, Z., Liu, H., Khan, A., Rahman, S. U., Khan, M. Z., Sathanawongs, A., & Zhang, Y. (2021). Impact of cryopreservation on spermatozoa freeze-thawed traits and relevance OMICS to assess sperm cryo-tolerance in farm animals. Frontiers in Veterinary Science, 8, Article 609180 https://doi.org/10.3389/fvets.2021.609180
Li, C. Y., Zhao, Y. H., Hao, H. S., Wang, H. Y., Huang, J. M., Yan, C. L., Du, W. H., Pang, Y. W., Zhang, P. P., Liu, Y., Zhu, H. Bin, & Zhao, X. M. (2018). Resveratrol significantly improves the fertilisation capacity of bovine sex-sorted semen by inhibiting apoptosis and lipid peroxidation. Scientific Reports, 8, Article 7603. https://doi.org/10.1038/s41598-018-25687-z
Li, J., Barranco, I., Tvarijonaviciute, A., Molina, M. F., Martinez, E. A., Rodriguez-Martinez, H., Parrilla, I., & Roca, J. (2018). Seminal plasma antioxidants are directly involved in boar sperm cryotolerance. Theriogenology, 107, 27–35. https://doi.org/10.1016/j.theriogenology.2017.10.035
Lima-Verde, I. B., Johannisson, A., Ntallaris, T., Al-Essawe, E., Al-Kass, Z., Nongbua, T., Dórea, F., Lundeheim, N., Kupisiewicz, K., Edman, A., & Morrell, J. M. (2018). Effect of freezing bull semen in two non-egg yolk extenders on post-thaw sperm quality. Reproduction in Domestic Animals, 53(1), 127–136. https://doi.org/10.1111/rda.13080
Lima-Verde, I., Hurri, E., Ntallaris, T., Johannisson, A., Stålhammar, H., & Morrell, J. M. (2022). Sperm quality in young bull semen can be improved by single layer centrifugation. Animals, 12(18), Article 2435. https://doi.org/10.3390/ani12182435
Madhusoodan, A. P., Sejian, V., Rashamol, V. P., Savitha, S. T., Bagath, M., Krishnan, G., & Bhatta, R. (2019). Resilient capacity of cattle to environmental challenges – An updated review. Journal of Animal Behaviour and Biometeorology, 7(3), 104–118. https://doi.org/10.31893/2318-1265jabb.v7n3p104-118
Makris, A., Alevra, A. I., Exadactylos, A., & Papadopoulos, S. (2023). The role of melatonin to ameliorate oxidative stress in sperm cells. International Journal of Molecular Sciences, 24(20), Article 15056. https://doi.org/10.3390/ijms242015056
Malo, C., Crichton, E. G., & Skidmore, J. A. (2020). Preservation of the spermatozoa of the dromedary camel (Camelus dromedarius) by chilling and freezing: The effects of cooling time, extender composition and catalase supplementation. Theriogenology, 153, 9–18. https://doi.org/10.1016/j.theriogenology.2020.04.043
Malvezzi, H., Sharma, R., Agarwal, A., Abuzenadah, A. M., & Abu-Elmagd, M. (2014). Sperm quality after density gradient centrifugation with three commercially available media: A controlled trial. Reproductive Biology and Endocrinology, 12, Article 121. https://doi.org/10.1186/1477-7827-12-121
Maroto-Morales, A., García-Álvarez, O., Ramón, M., Martínez-Pastor, F., Fernández-Santos, M., Soler, A., & Garde, J. (2016). Current status and potential of morphometric sperm analysis. Asian Journal of Andrology, 18(6), 863–870. https://doi.org/10.4103/1008-682X.187581
Marques, J. C. C., Cezar, A. R. R., do Nascimento, A. D., da Silva, J. P., Batista, A. M., Guerra, M. M. P., & Câmara, D. R. (2023). Relationship between Na/K-ATPase in thawed sperm and fertility of Angus bulls. Animal Reproduction, 20(4), Article e20220066 https://doi.org/10.1590/1984-3143-AR2022-0066
Martín, A., Castaño, C., O’Brien, E., Toledano-Díaz, A., Guerra, R., Gómez-Guillamón, F., & Santiago-Moreno, J. (2023). Equilibration time improves the sperm variables of wild ruminant ejaculated and epididymal sperm cryopreserved by ultra-rapid freezing. Cryobiology, 113, Article 104579. https://doi.org/10.1016/j.cryobiol.2023.104579
Martínez-Aguilar, E. (2020). Reseña del origen y desaparición de los bovinos criollos en El Salvador, el primer paso para una posible reintroducción. Revista Científica de La Facultad de Ciencias Agronómicas de La Universidad de El Salvador, 3(16), 118–129. https://doi.org/10.5281/zenodo.10840488
Martinez-Alborcia, M. J., Valverde, A., Parrilla, I., Vazquez, J. M., Martinez, E. A., & Roca, J. (2012). Detrimental effects of non-functional spermatozoa on the freezability of functional spermatozoa from boar ejaculate. PLoS ONE, 7(5), Article e36550. https://doi.org/10.1371/journal.pone.0036550
Masoudi, R., Zare Shahneh, A., Towhidi, A., Kohram, H., Akbarisharif, A., & Sharafi, M. (2017). Fertility response of artificial insemination methods in sheep with fresh and frozen-thawed semen. Cryobiology, 74, 77–80. https://doi.org/10.1016/j.cryobiol.2016.11.012
Medina-Robles, V., Sánchez-Carvajal, E., Velasco-Santamaria, Y., & Cruz-Casallas, P. (2007). Crioconservación de semen bovino usando un congelador programable (CL-8800) y determinación de su calidad postdescongelación por medio un sistema de análisis espermático asistido por computador (CASA). Revista ORINOQUIA, 11(1), 75–86.
Mirkena, T., Duguma, G., Haile, A., Tibbo, M., Okeyo, A. M., Wurzinger, M., & Sölkner, J. (2010). Genetics of adaptation in domestic farm animals: A review. In Livestock Science, 132(1–3), 1–12. https://doi.org/10.1016/j.livsci.2010.05.003
Moore, S. G., & Hasler, J. F. (2017). A 100-Year Review: Reproductive technologies in dairy science. Journal of Dairy Science, 100(12), 10314–10331. https://doi.org/10.3168/jds.2017-13138
Morrell, J. M., & Rodriguez-Martinez, H. (2016). Colloid centrifugation of semen: applications in assisted reproduction. American Journal of Analytical Chemistry, 7(8), 597–610. https://doi.org/10.4236/ajac.2016.78055
Mphaphathi, M. L., & Nedambale, T. L. (2021). Effect of repeated freezing and thawing on nguni sperm parameters evaluated by computer assisted sperm analyzer system. American Journal of Animal and Veterinary Sciences, 16(1), 1–6. https://doi.org/10.3844/ajavsp.2021.1.6
Mujica, F. (2009). Diversidad y conservación de los recursos zoogenéticos de país. Agro Sur, 37(3), 134–175.
Nagata, M. P. B., Egashira, J., Katafuchi, N., Endo, K., Ogata, K., Yamanaka, K., Yamanouchi, T., Matsuda, H., Hashiyada, Y., & Yamashita, K. (2019). Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility. Journal of Animal Science and Biotechnology, 10, Article 91. https://doi.org/10.1186/s40104-019-0395-9
Ogata, K., Imai, A., Sato, S., Nishino, K., Watanabe, S., Somfai, T., Kobayashi, E., & Takeda, K. (2022). Effects of reduced glutathione supplementation in semen freezing extender on frozen-thawed bull semen and in vitro fertilization. Journal of Reproduction and Development, 68(1), 53–61.
Ozimic, S., Ban-Frangez, H., & Stimpfel, M. (2023). Sperm cryopreservation today: Approaches, efficiency, and pitfalls. Current Issues in Molecular Biology, 45(6), 4716–4734. https://doi.org/10.3390/cimb45060300
Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11–26. https://doi.org/10.1007/s12291-014-0446-0
Pieper, L., Meschede, T., Jung, M., Janowitz, U., & Schulze, M. (2023). Influence of equilibration time and bull-specific extender for cryopreservation on semen quality and fertility in german holstein friesian bulls: A controlled field trial. Animals, 13(14). Article 2285. https://doi.org/10.3390/ani13142285
Pintus, E., & Ros-Santaella, J. L. (2021). Impact of oxidative stress on male reproduction in domestic and wild animals. Antioxidants, 10(7), Article 1154 https://doi.org/10.3390/antiox10071154
Qamar, A. Y., Naveed, M. I., Raza, S., Fang, X., Roy, P. K., Bang, S., Tanga, B. M., Saadeldin, I. M., Lee, S., & Cho, J. (2023). Role of antioxidants in fertility preservation of sperm - A narrative review. Animal Bioscience, 36(3), 385–403. https://doi.org/10.5713/ab.22.0325
Raad, G., Lteif, L., Lahoud, R., Azoury, J., Azoury, J., Tanios, J., Hazzouri, M., & Azoury, J. (2018). Cryopreservation media differentially affect sperm motility, morphology and DNA integrity. Andrology, 6(6), 836–845. https://doi.org/10.1111/andr.12531
Raheja, N., Grewal, S., Sharma, N., Kumar, N., & Choudhary, S. (2018). A review on semen extenders and additives used in cattle and buffalo bull semen preservation. Journal of Entomology and Zoology Studies, 6(3), 239–245. https://www.entomoljournal.com/archives/?year=2018&vol=6&issue=3&ArticleId=3575
Roca, J., Martinez-Alborcia, M. J., Gil, M. A., Parrilla, I., & Martinez, E. A. (2013). Dead spermatozoa in raw semen samples impair in vitro fertilization outcomes of frozen-thawed spermatozoa. Fertility and Sterility, 100(3), 875–881. https://doi.org/10.1016/j.fertnstert.2013.05.020
Ruan, Q., Yang, S., Hua, S., Zhang, W., Li, D., Yang, Y., Wang, X., Wang, Q., & Meng, Z. (2024). Supplementation of extender with melatonin improves the motility, mitochondrial membrane potential, and fertilization ability of cryopreserved brown-marbled grouper sperm. Animals, 14(7), Article 995. https://doi.org/10.3390/ani14070995
Sabeti, P., Pourmasumi, S., Rahiminia, T., Akyash, F., & Reza Talebi, A. (2016). Etiologies of sperm oxidative stress. International Journal of Reproductive BioMedicine, 14(4), 231–240.
Saili, T., Nafiu, L. O., Pagala, M. A., Bain, A., Aku, A. S., Rahadi, S., Rusdin, M., & Lopulalan, F. (2023). Sperm quality of Bali bull following sexing and freezing using different cryoprotectants. IOP Conference Series: Earth and Environmental Science, 1241(1), Article 012137. https://doi.org/10.1088/1755-1315/1241/1/012137
Sakatani, M. (2022). [The role of reproductive biology in SDGs] Global warming and cattle reproduction: Will increase in cattle numbers progress to global warming? Journal of Reproduction and Development, 68(2), 90–95. https://sdgs.un.org/goals
Sandfoss, M. R., Cantrell, J., Roberts, B. M., & Reichling, S. (2022). Cryopreservation of sperm from an endangered snake with tests of post-thaw incubation in caffeine. Animals, 12(14), Article 1824. https://doi.org/10.3390/ani12141824
Saranholi, D. A. C., Paula, R. R. de, Pytilak, E., Afonso, F., Canela, L. F., Almeida, A. B. M. de, Hidalgo, M. M. T., Martins, M. I. M., Blaschi, W., & Barreiros, T. R. R. (2021). Comparison of seminal characteristics of Aberdeen Angus, Holstein and Nelore bulls before and after cryopreservation. Research, Society and Development, 10(16), Article e408101623382. https://doi.org/10.33448/rsd-v10i16.23382
Sathe, S. (2021). Cryopreservation of semen. In M. Richard, D. V. M. Hopper, & A. C. T. Diplomat (Eds.), Bovine reproduction (pp. 986–999). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119602484.ch78
Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), 453-462. https://doi.org/10.1016/j.cub.2014.03.034
Schulze, M., Grobbel, M., Riesenbeck, A., Brüning, S., Schaefer, J., Jung, M., & Grossfeld, R. (2017). Dose rates of antimicrobial substances in boar semen preservation—time to establish new protocols. Reproduction in Domestic Animals, 52(3), 397–402. https://doi.org/10.1111/rda.12921
Seshoka, M. M., Mphaphathi, M. L., & Nedambale, T. L. (2016). Comparison of four different permitting and combination of two best cryoprotectants on freezing Nguni sperm evaluated with the aid of computer aided sperm analysis. Cryobiology, 72(3), 232–238. https://doi.org/10.1016/j.cryobiol.2016.04.001
Shah, S. A. H., Andrabi, S. M. H., & Qureshi, I. Z. (2016). Effect of equilibration times, freezing, and thawing rates on post-thaw quality of buffalo (Bubalus bubalis) bull spermatozoa. Andrology, 4(5), 972–976. https://doi.org/10.1111/andr.12214
Sharafi, M., Blondin, P., Vincent, P., Anzar, M., & Benson, J. D. (2022). Hydroxytyrosol and resveratrol improves kinetic and flow cytometric parameters of cryopreserved bull semen with low cryotolerance. Animal Reproduction Science, 245, Article 107065. https://doi.org/10.1016/j.anireprosci.2022.107065
Sharafi, M., Borghei-Rad, S. M., Hezavehei, M., Shahverdi, A., & Benson, J. D. (2022). Cryopreservation of semen in domestic animals: A review of current challenges, applications, and prospective strategies. Animals, 12(23), Article 107065. https://doi.org/10.3390/ani12233271
Sieme, H., & Oldenhof, H. (2015). Sperm cleanup and centrifugation processing for cryopreservation. Methods in Molecular Biology, 1257, 343–352. https://doi.org/10.1007/978-1-4939-2193-5_16
Silpa, M. V., König, S., Sejian, V., Malik, P. K., Nair, M. R. R., Fonseca, V. F. C., Maia, A. S. C., & Bhatta, R. (2021). Climate-resilient dairy cattle production: Applications of genomic tools and statistical models. Frontiers in Veterinary Science, 8, Article 625189. https://doi.org/10.3389/fvets.2021.625189
Silvestre, M. A., Yániz, J. L., Peña, F. J., Santolaria, P., & Castelló-Ruiz, M. (2021). Role of antioxidants in cooled liquid storage of mammal spermatozoa. Antioxidants, 10(7), Article 1096. https://doi.org/10.3390/antiox10071096
Simonik, O., Bubenickova, F., Tumova, L., Frolikova, M., Sur, V. P., Beran, J., Havlikova, K., Hackerova, L., Spevakova, D., Komrskova, K., & Postlerova, P. (2022). Boar sperm cryopreservation improvement using semen extender modification by dextran and pentaisomaltose. Animals, 12(7), Article 868. https://doi.org/10.3390/ani12070868
Slanina, T., Petrovičová, L., Miškeje, M., Kňížat, L., Mirda, J., Lukáč, N., Trandžík, J., Petrovičová, I., & Massányi, P. (2015). The effect of diluent, temperature and age on turkey spermatozoa motility in vitro. Journal of Applied Animal Research, 43(2), 131–136. https://doi.org/10.1080/09712119.2014.928627
Stuart, C. C., Vaughan, J. L., Kershaw, C. M., de Graaf, S. P., & Bathgate, R. (2019). Effect of diluent type, cryoprotectant concentration, storage method and freeze/thaw rates on the post-thaw quality and fertility of cryopreserved alpaca spermatozoa. Scientific Reports, 9, Article 12826. https://doi.org/10.1038/s41598-019-49203-z
Sztein, J. M., Takeo, T., & Nakagata, N. (2018). History of cryobiology, with special emphasis in evolution of mouse sperm cryopreservation. Cryobiology, 82, 57–63. https://doi.org/10.1016/j.cryobiol.2018.04.008
Thema, M. A., Mphaphathi, M. L., Ledwaba, M. R., & Nedambale, T. L. (2023). Sperm cryopreservation in Windsnyer boars; principles, technique, and updated outcomes. Animal Reproduction, 20(3), Article e20220100. https://doi.org/10.1590/1984-3143-AR2022-0100
Tvrdá, E., Massanyi, P., & Lukáč, N. (2018). Physiological and Pathological Roles of Free Radicals in Male Reproduction. In R. Meccariello, & R. Chianese (Eds.), Spermatozoa- Facts and Perspectives (pp. 117-157). InTech. https://doi.org/10.5772/intechopen.70793
Ugur, M. R., Saber Abdelrahman, A., Evans, H. C., Gilmore, A. A., Hitit, M., Arifiantini, R. I., Purwantara, B., Kaya, A., & Memili, E. (2019). Advances in Cryopreservation of Bull Sperm. Frontiers in Veterinary Science, 6, Article 268. https://doi.org/10.3389/fvets.2019.00268
Vanvanhossou, S. F. U., Dossa, L. H., & König, S. (2021). Sustainable management of animal genetic resources to improve low-input livestock production: Insights into local beninese cattle populations. Sustainability, 13(17), Article 9874. https://doi.org/10.3390/su13179874
Vázquez Gil, Á., & Guevara Viera, G. (2021). La genética molecular en la conservación de los recursos zoogenéticos. Revista de Producción Animal, 33(2), 83-101.
Vilela, C. G., Marquez, J. M., Graham, J. K., & Barfield, J. P. (2017). Cryopreservation of bison epididymal sperm: A strategy for improving post-thaw quality when collecting sperm in field conditions. Theriogenology, 89, 155–161. https://doi.org/10.1016/j.theriogenology.2016.09.044
Villaverde-Morcillo, S., Soler, A. J., Esteso, M. C., Castaño, C., Miñano-Berna, A., Gonzalez, F., & Santiago-Moreno, J. (2017). Immature and mature sperm morphometry in fresh and frozen-thawed falcon ejaculates. Theriogenology, 98, 94–100. https://doi.org/10.1016/j.theriogenology.2017.04.051
Víquez, L., Barquero, V., & Valverde, A. (2021). Optimal conditions for the kinematic analysis in fresh semen of Brahman bulls with a CASA-Mot system. Agronomía Mesoamericana, 32(3), 920–938. https://doi.org/10.15517/AM.V32I3.42768
Víquez, L., Sevilla, F., Araya-Zúñiga, I., Soler, C., Barquero, V., Roldan, E. R. S., & Valverde, A. (2023). Morphometric assessment of cryopreserved livestock bull spermatozoa in the tropics. Reproduction in Domestic Animals, 58(10), 1439–1447. https://doi.org/10.1111/rda.14459
Viudes de Castro, M. P., Talaván, A. G., & Vicente, J. S. (2021). Evaluation of dextran for rabbit sperm cryopreservation: Effect on frozen–thawed rabbit sperm quality variables and reproductive performance. Animal Reproduction Science, 226, Article 106714. https://doi.org/10.1016/j.anireprosci.2021.106714
Yánez-Ortiz, I., Catalán, J., Rodríguez-Gil, J. E., Miró, J., & Yeste, M. (2022). Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Animal Reproduction Science, 246, Article 106904. https://doi.org/10.1016/j.anireprosci.2021.106904
Yang, S. X., Adams, G. P., Palomino, J. M., Huanca, W. F., Lessard, C., Rajapaksha, K., & Anzar, M. (2020). Cryopreservation of bison semen without exogenous protein in extender and its fertility potential in vitro and in vivo following fixed-time artificial insemination. Theriogenology, 152, 156–164. https://doi.org/10.1016/j.theriogenology.2020.04.018
Zeitoun, M. M., & Al-Damegh, M. A. (2015). Effect of Nonenzymatic Antioxidants on Sperm Motility and Survival Relative to Free Radicals and Antioxidant Enzymes of Chilled-Stored Ram Semen. Open Journal of Animal Sciences, 5(1), 50–58. https://doi.org/10.4236/ojas.2015.51007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ignacio Araya-Zúñiga, Francisco Sevilla, José A. González, Kenneth Matamoros, Anthony Valverde

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).