The effect of extender, age, and bovine sexual status on the sperm kinematics
DOI:
https://doi.org/10.15517/am.2023.52597Keywords:
spermatozoa, bulls, animal biotechnology, andrology, reproductionAbstract
Introduction. The kinematic patterns of semen are influenced by individual variation and/or environmental effects, determined by the handling after sample collection. Objective. To evaluate the effect of two commercial extenders, bull age, and sexual status on the motility and kinetics parameters of fresh bovine semen. Materials and methods. The study was conducted on the livestock farms “La Vega,” San Carlos, and “La Balsa”, San Ramón, Costa Rica, between March and August 2021. Donated semen from thirteen Brahman bulls was used, extracted through electroejaculation. A total of 45 ejaculates were collected, with a minimum of two and a maximum of five per animal. The semen was diluted with two commercial extenders, Optixcell® and Bioxcell®, at a temperature of 37 °C. The samples were analyzed using the Computer-Assisted Semen Analysis (CASA)-Mot ISAS®v1 system and a reusable Spermtrack® counting chamber (20 μm). Results. Differences (p<0.05) were observed in sperm motility and kinematics, as well as sperm kinetic parameters, depending to the extender used. Bioxcell® showed higher progressive motility (64.03±2.01 %) compared to Optixcell®. Ejaculates diluted with Bioxcell® exhibited a more linear and progressive kinematic pattern than those diluted with Optixcell®, which had lower average velocity (VAP=106.67±0.24 μm s-1) and straightness index (STR=79.35±0.10%). Age did not show differences in total motility, but progressive motility was higher in animals >48 months (62.27±1.87 %). An effect of sexual status was observed with higher linearity, velocity, and sperm oscillation during mating compared to sexual rest. Conclusion. Age, sexual status, and the extender used for semen preservation influenced the sperm quality of bovine ejaculates.
Downloads
References
Akhter, S., Ansari, M. S., Rakha, B. A., Ullah, N., Andrabi, S. M. H., & Khalid, M. (2011). In vitro evaluation of liquid-stored buffalo semen at 5°C diluted in soya lecithin based extender (Bioxcell®), tris-citric egg yolk, skim milk and egg yolk-citrate extenders. Reproduction in Domestic Animals, 46(1), 45–49. https://doi.org/10.1111/J.1439-0531.2009.01561.X
Amann, R. P., & Waberski, D. (2014). Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology, 81(1), 5–17.e3. https://doi.org/10.1016/J.THERIOGENOLOGY.2013.09.004
Argiris, A., Ondho, Y. S., Santoso, S. I., & Kurnianto, E. (2018). Effect of age and bulls on fresh semen quality and frozen semen production of holstein bulls in Indonesia. IOP Conference Series: Earth and Environmental Science, 119(1), Article 012033. https://doi.org/10.1088/1755-1315/119/1/012033
Ball, L., & Furman, J. W. (1972). Electroejaculation of the bull. The Bovine Practitioner, 7, 46–48. https://doi.org/10.21423/bovine-vol1972no7p46-48
Barth, A. D. (2018). Review: The use of bull breeding soundness evaluation to identify subfertile and infertile bulls. Animal, 12(S1), s158–s164. https://doi.org/10.1017/S1751731118000538
Beran, J., Stádník, L., Bezdíček, J., Louda, F., Čítek, J., & Ducháček, J. (2012). Effect of sire and extender on sperm motility and share of live or dead sperm in bulls’ fresh ejaculate and in AI doses after thawing. Archives Animal Breeding, 55(3), 207–218. https://doi.org/10.5194/AAB-55-207-2012
Bompart, D., García-Molina, A., Valverde, A., Caldeira, C., Yániz, J., Núñez de Murga, M., & Soler, C. (2018). CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reproduction, Fertility and Development, 30(6), 810–819. https://doi.org/10.1071/RD17551
Bompart, D., Vázquez, R., Gómez, R., Valverde, A., Roldán, E. R. S., García-Molina, A., & Soler, C. (2019). Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Animal Reproduction Science, 209, Article 106169. https://doi.org/10.1016/J.ANIREPROSCI.2019.106169
Broekhuijse, M. L. W. J., Šoštarić, E., Feitsma, H., & Gadella, B. M. (2011). Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology, 76(8), 1473–1486.e1. https://doi.org/10.1016/j.theriogenology.2011.05.040
Büyükleblebici, S., Barbaros Tuncer, P., Numan Bucak, M., Eken, A., Sariözkan, S., Taşdemir, U., & Ünlü Endirlik, B. (2014). Cryopreservation of bull sperm: Effects of extender supplemented with different cryoprotectants and antioxidants on sperm motility, antioxidant capacity and fertility results. Animal Reproduction Science, 150(3–4), 77–83. https://doi.org/10.1016/j.anireprosci.2014.09.006
Caldeira, C., Hernández-Ibáñez, S., Valverde, A., Martin, P., Herranz-Jusdado, J. G., Gallego, V., Asturiano, J. F., Dzyuba, B., Pšenička, M., & Soler, C. (2019). Standardization of sperm motility analysis by using CASA-Mot for Atlantic salmon (Salmo salar), European eel (Anguilla anguilla) and Siberian sturgeon (Acipenser baerii). Aquaculture, 502, 223–231. https://doi.org/10.1016/j.aquaculture.2018.12.001
Calderón-Calderón, J., Sevilla, F., Roldan, E. R. S., Barquero, V., & Valverde, A. (2022). Influence of fat-soluble vitamin intramuscular supplementation on kinematic and morphometric sperm parameters of boar ejaculates. Frontiers in Veterinary Science, 9, Article 908763. https://doi.org/10.3389/FVETS.2022.908763
Clermont, Y. (1972). Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiological Reviews, 52(1), 198–236. https://doi.org/10.1152/physrev.1972.52.1.198
Contri, A., Zambelli, D., Faustini, M., Cunto, M., Gloria, A., & Carluccio, A. (2012). Artificial neural networks for the definition of kinetic subpopulations in electroejaculated and epididymal spermatozoa in the domestic cat. Reproduction, 144(3), 339–347. https://doi.org/10.1530/REP-12-0125
Fernandes, M., Rodríguez Hernández, P., Simões, J., & Barbas, J. P. (2021). Effects of three semen extenders, breeding season month and freezing–thawing cycle on spermatozoa preservation of portuguese Merino sheep. Animals, 11(9), Article 2619. https://doi.org/10.3390/ANI11092619
Fernandes Júnior, G. A., Alves Silva, D., Macedo Mota, L. F., Pinto de Melo, T., Simielli Fonseca, L. F., dos Santos Silva, D. B., Carvalheiro, R., & Galvão Albuquerque, L. (2022). Sustainable intensification of beef production in the tropics: The role of genetically improving sexual precocity of heifers. Animals, 12(2), Article 174. https://doi.org/10.3390/ani12020174
Fuerst-Waltl, B., Schwarzenbacher, H., Perner, C., & Sölkner, J. (2006). Effects of age and environmental factors on semen production and semen quality of Austrian Simmental bulls. Animal Reproduction Science, 95(1–2), 27–37. https://doi.org/10.1016/J.ANIREPROSCI.2005.09.002
Gadea, J. (2003). Review: semen extenders used in the artificial inseminarion of swine. Spanish Journal of Agricultural Research, 1(2), 17–27. https://doi.org/10.5424/sjar/2003012-17
Gadea, J., Sellés, E., & Marco, M. A. (2004). The predictive value of porcine seminal parameters on fertility outcome under commercial conditions. Reproduction in Domestic Animals, 39(5), 303–308. https://doi.org/10.1111/j.1439-0531.2004.00513.x
García, W., Tabarez, A., & Palomo, M. J. (2017). Effect of the type of egg yolk, removal of seminal plasma and donor age on ram sperm cryopreservation. Animal Reproduction, 14(4), 1124–1132. http://doi.org/10.21451/1984-3143-AR916
Hahn, K., Failing, K., & Wehrend, A. (2019). Effect of temperature and time after collection on buck sperm quality. BMC Veterinary Research, 15(1), Article 355. https://doi.org/10.1186/s12917-019-2135-y
Hernández-Avilés, C., Serafini, R., Love, C. C., Teague, S. R., LaCaze, K. A., Lawhon, S. D., Wu, J., Blanchard, T. L., & Varner, D. D. (2018). The effects of antibiotic type and extender storage method on sperm quality and antibacterial effectiveness in fresh and cooled-stored stallion semen. Theriogenology, 122, 23–29. https://doi.org/10.1016/J.THERIOGENOLOGY.2018.08.022
Ibănescu, I., Leiding, C., Ciornei, Ş. G., Roşca, P., Sfartz, I., & Drugociu, D. (2016). Differences in CASA output according to the chamber type when analyzing frozen-thawed bull sperm. Animal Reproduction Science, 166, 72–79. https://doi.org/10.1016/j.anireprosci.2016.01.005
Ilacqua, A., Izzo, G., Emerenziani, G. P., Baldari, C., & Aversa, A. (2018). Lifestyle and fertility: the influence of stress and quality of life on male fertility. Reproductive Biology and Endocrinology, 16(1), Article 115. https://doi.org/10.1186/S12958-018-0436-9
Kondracki, S., Iwanina, M., Wysokińska, A., & Huszno, M. (2012). Comparative analysis of Duroc and Pietrain boar sperm morphology. Acta Veterinaria Brno, 81(2), 195–199. https://doi.org/10.2754/avb201281020195
Kumar, P., Saini, M., Kumar, D., Balhara, A. K., Yadav, S. P., Singh, P., & Yadav, P. S. (2015). Liposome-based semen extender is suitable alternative to egg yolk-based extender for cryopreservation of buffalo (Bubalus bubalis) semen. Animal Reproduction Science, 159, 38–45. https://doi.org/10.1016/J.ANIREPROSCI.2015.05.010
Kumar Paul, R., Balaganur, K., Kumar, D., & Singh, R. (2019). Mimicking the cauda epididymal plasma-like osmolality in extender improves liquid preservation of ram semen at 3-5°C. Systems Biology in Reproductive Medicine, 65(6), 474–482. https://doi.org/10.1080/19396368.2019.1642416
Leugoué Kameni, S., Meutchieye, F., & Ngoula, F. (2021). Liquid storage of ram semen: associated damages and improvement. Open Journal of Animal Sciences, 11, 473–500. https://doi.org/10.4236/OJAS.2021.113033
Łukaszewicz, E., Jerysz, A., & Kowalczyk, A. (2020). Effect of semen extenders on viability of ISA Brown and Hubbard Flex roosters’ sperm stored for 24 h. Poultry Science, 99(5), 2766–2774. https://doi.org/10.1016/J.PSJ.2019.12.055
Majić Balić, I., Milinković-Tur, S., Samardžija, M., & Vince, S. (2012). Effect of age and environmental factors on semen quality, glutathione peroxidase activity and oxidative parameters in simmental bulls. Theriogenology, 78(2), 423–431. https://doi.org/10.1016/j.theriogenology.2012.02.022
Morrell, J. M., Valeanu, A. S., Lundeheim, N., & Johannisson, A. (2018). Sperm quality in frozen beef and dairy bull semen. Acta Veterinaria Scandinavica, 60(1) Article 41. https://doi.org/10.1186/s13028-018-0396-2
Mortimer, S. T., van der Horst, G., & Mortimer, D. (2015). The future of computer-aided sperm analysis. Asian Journal of Andrology, 17(4), 545–553. https://doi.org/10.4103/1008-682X.154312
Murphy, E., Eivers, B., O’Meara, C. M., Lonergan, P., & Fair, S. (2018). Effect of increasing equilibration time of diluted bull semen up to 72 h prior to freezing on sperm quality parameters and calving rate following artificial insemination. Theriogenology, 108, 217–222. https://doi.org/10.1016/j.theriogenology.2017.11.034
Murphy, C., Holden, S. A., Murphy, E. M., Cromie, A. R., Lonergan, P., & Fair, S. (2016). The impact of storage temperature and sperm number on the fertility of liquid-stored bull semen. Reproduction, Fertility and Development, 28(9), 1349–1359. https://doi.org/10.1071/RD14369
Murphy, E. M., Kelly, A. K., O’Meara, C., Eivers, B., Lonergan, P., & Fair, S. (2018). Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in holstein friesian bulls in a commercial artificial insemination centre. Journal of Animal Science, 96(6), 2408–2418. https://doi.org/10.1093/jas/sky130
Murphy, E. M., Murphy, C., O’Meara, C., Dunne, G., Eivers, B., Lonergan, P., & Fair, S. (2017). A comparison of semen diluents on the in vitro and in vivo fertility of liquid bull semen. Journal of Dairy Science, 100(2), 1541–1554. https://doi.org/10.3168/JDS.2016-11646
O’Hara, L., Hanrahan, J. P., Richardson, L., Donovan, A., Fair, S., Evans, A. C. O., & Lonergan, P. (2010). Effect of storage duration, storage temperature, and diluent on the viability and fertility of fresh ram sperm. Theriogenology, 73(4), 541–549. https://doi.org/10.1016/j.theriogenology.2009.10.009
Pongsiri, W., Rungruangsak, J., Pant, S. D., & Stephen, C. P. (2020). The effect of false mount on quality of frozen-thawed semen in Bos indicus beef bulls. Journal of Veterinary Medical Science, 82(5), 673–677. https://doi.org/10.1292/JVMS.20-0025
Romano, J. E., Mari, G., Stradaioli, G., & Mislei, B. (2021). Effect of fasting prior to electroejaculation on behavioral responses and reproductive parameters in young Simmental bulls. Theriogenology, 173, 19–22. https://doi.org/10.1016/J.THERIOGENOLOGY.2021.05.019
Şahin, D., Baştan, İ., Çil, B., Tekín, K., Akçay, E., Daşkın, A., & Stelletta, C. (2020). The number of false mounting affects the quality of semen in bulls. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi, 60(1), 9–14. https://doi.org/10.46897/LAHAED.701388
Schenk, J. L. (2018). Review: Principles of maximizing bull semen production at genetic centers. Animal, 12(S1), s142–s147. https://doi.org/10.1017/S1751731118000472
Sikka, S. C. (2004). Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. Journal of Andrology, 25(1), 5–18. https://doi.org/10.1002/j.1939-4640.2004.tb02751.x
Siudzińska, A., & Łukaszewicz, E. (2008). Effect of semen extenders and storage time on sperm morphology of four chicken breeds. Journal of Applied Poultry Research, 17(1), 101–108. https://doi.org/10.3382/japr.2007-00048
Snoj, T., Kobal, S., & Majdic, G. (2013). Effects of season, age, and breed on semen characteristics in different Bos taurus breeds in a 31-year retrospective study. Theriogenology, 79(5), 847–852. https://doi.org/10.1016/J.THERIOGENOLOGY.2012.12.014
Staub, C., & Johnson, L. (2018). Review: Spermatogenesis in the bull. Animal, 12(1), s27–s35. https://doi.org/10.1017/S1751731118000435
Sundararaman, M. N., Kalatharan, J., & Thalik Pon Jawahar, K. (2012). Computer assisted semen analysis for quantification of motion characteristics of bull sperm during cryopreservation cycle. Veterinary World, 5(12), 723–726. https://doi.org/10.5455/vetworld.2012.723-726
Taaffe, P., O’Meara, C. M., Stiavnicka, M., Byrne, C. J., Eivers, B., Lonergan, P., & Fair, S. (2022). Increasing the frequency of ejaculate collection in young dairy bulls increases semen production and field fertility. Theriogenology, 182, 45–52. https://doi.org/10.1016/J.THERIOGENOLOGY.2022.01.030
Tatman, S. R., Neuendorff, D. A., Wilson, T. W., & Randel, R. D. (2004). Influence of season of birth on growth and reproductive development of Brahman bulls. Theriogenology, 62(1–2), 93–102. https://doi.org/10.1016/j.theriogenology.2003.07.027
Teik Chung, E. L., Nayan, N., Mohammad Nasir, N. S., Hing, P. S. A., Ramli, S., Abdul Rahman, M. H., & Hamidi Kamalludin, M. (2019). Effect of honey as an additive for cryopreservation on bull semen quality from different cattle breeds under tropical condition. Journal of Animal Health and Production, 7(4), 171–178. https://doi.org/10.17582/JOURNAL.JAHP/2019/7.4.171.178
Thundathil, J. C., Dance, A. L., & Kastelic, J. P. (2016). Fertility management of bulls to improve beef cattle productivity. Theriogenology, 86(1), 397–405. https://doi.org/10.1016/j.theriogenology.2016.04.054
Tvrdá, E., Kňažická, Z., Lukáčová, J., Schneidgenová, M., Goc, Z., Greń, A., Szabó, C., Massányi, P., & Lukáč, N. (2013). The impact of lead and cadmium on selected motility, prooxidant and antioxidant parameters of bovine seminal plasma and spermatozoa. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 48(10), 1292–1300. https://doi.org/10.1080/10934529.2013.777243
Ugur, M. R., Saber Abdelrahman, A., Evans, H. C., Gilmore, A. A., Hitit, M., Iis Arifiantini, R., Purwantara, B., Kaya, A., & Memili, E. (2019). Advances in cryopreservation of bull sperm. Frontiers in Veterinary Science, 6, Article 268. https://doi.org/10.3389/fvets.2019.00268
Valverde, A., Madrigal, M., Caldeira, C., Bompart, D., Núñez de Murga, J., Arnau, S., & Soler, C. (2019). Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analysed with a CASA-Mot system. Reproduction in Domestic Animals, 54(2), 167–175. https://doi.org/10.1111/rda.13320
Valverde, A., & Madrigal-Valverde, M. (2018). Sistemas de análisis computadorizado de semen en la reproducción animal. Agronomía Mesoamericana, 29(2), 469–484. https://doi.org/10.15517/ma.v29i2.30613
Valverde, A., Madrigal-Valverde, M., Camacho-Calvo, M., Zambrana-Jiménez, A., & López, L. (2018). Efecto de la composición racial sobre la calidad espermática de verracos. Agronomía Mesoamericana, 29(3), 485–506. https://doi.org/10.15517/ma.v29i3.32445
Valverde, A., Madrigal-Valverde, M., Lotz, J., Bompart, D., & Soler, C. (2019). Effect of video capture time on sperm kinematic parameters in breeding boars. Livestock Science, 220, 52–56. https://doi.org/10.1016/j.livsci.2018.12.008
van der Horst, G. (2020). Computer Aided Sperm Analysis (CASA) in domestic animals: Current status, three D tracking and flagellar analysis. Animal Reproduction Science, 220, Article 106350. https://doi.org/10.1016/j.anireprosci.2020.106350
Víquez, L., Barquero, V., & Valverde, A. (2021). Condiciones óptimas de análisis cinético en semen fresco de toros Brahman con un sistema CASA-Mot. Agronomía Mesoamericana, 32(3), 920–938. https://doi.org/10.15517/am.v32i3.42768
Waberski, D., Suarez, S. S., & Henning, H. (2022). Assessment of sperm motility in livestock: Perspectives based on sperm swimming conditions in vivo. Animal Reproduction Science, 246, Article 106849. https://doi.org/10.1016/j.anireprosci.2021.106849
Wu, Y., Wang, C., Tan, J., Wei, H-k., Sun, H., & Peng, J. (2019). Logistic regression analysis factors affecting sperm motility and abnormal sperm morphology in boars. Animals, 9(12), Article 1004. https://doi.org/10.3390/ANI9121004
Yodmingkwan, P., Guntaprom, S., Jaksamrit, J., & Lertchunhakiat, K. (2016). Effects of extenders on fresh and freezing semen of Boer goat. Agriculture and Agricultural Science Procedia, 11, 125–130. https://doi.org/10.1016/j.aaspro.2016.12.021
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ignacio Araya-Zúñiga, Francisco Sevilla, Vinicio Barquero, Anthony Valverde
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).