The effect of extender, age, and bovine sexual status on the sperm kinematics

Authors

DOI:

https://doi.org/10.15517/am.2023.52597

Keywords:

spermatozoa, bulls, animal biotechnology, andrology, reproduction

Abstract

Introduction. The kinematic patterns of semen are influenced by individual variation and/or environmental effects, determined by the handling after sample collection. Objective. To evaluate the effect of two commercial extenders, bull age, and sexual status on the motility and kinetics parameters of fresh bovine semen. Materials and methods. The study was conducted on the livestock farms “La Vega,” San Carlos, and “La Balsa”, San Ramón, Costa Rica, between March and August 2021. Donated semen from thirteen Brahman bulls was used, extracted through electroejaculation. A total of 45 ejaculates were collected, with a minimum of two and a maximum of five per animal. The semen was diluted with two commercial extenders, Optixcell® and Bioxcell®, at a temperature of 37 °C. The samples were analyzed using the Computer-Assisted Semen Analysis (CASA)-Mot ISAS®v1 system and a reusable Spermtrack® counting chamber (20 μm). Results. Differences (p<0.05) were observed in sperm motility and kinematics, as well as sperm kinetic parameters, depending to the extender used. Bioxcell® showed higher progressive motility (64.03±2.01 %) compared to Optixcell®. Ejaculates diluted with Bioxcell® exhibited a more linear and progressive kinematic pattern than those diluted with Optixcell®, which had lower average velocity (VAP=106.67±0.24 μm s-1) and straightness index (STR=79.35±0.10%). Age did not show differences in total motility, but progressive motility was higher in animals >48 months (62.27±1.87 %). An effect of sexual status was observed with higher linearity, velocity, and sperm oscillation during mating compared to sexual rest. Conclusion. Age, sexual status, and the extender used for semen preservation influenced the sperm quality of bovine ejaculates.

Downloads

Download data is not yet available.

References

Akhter, S., Ansari, M. S., Rakha, B. A., Ullah, N., Andrabi, S. M. H., & Khalid, M. (2011). In vitro evaluation of liquid-stored buffalo semen at 5°C diluted in soya lecithin based extender (Bioxcell®), tris-citric egg yolk, skim milk and egg yolk-citrate extenders. Reproduction in Domestic Animals, 46(1), 45–49. https://doi.org/10.1111/J.1439-0531.2009.01561.X

Amann, R. P., & Waberski, D. (2014). Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology, 81(1), 5–17.e3. https://doi.org/10.1016/J.THERIOGENOLOGY.2013.09.004

Argiris, A., Ondho, Y. S., Santoso, S. I., & Kurnianto, E. (2018). Effect of age and bulls on fresh semen quality and frozen semen production of holstein bulls in Indonesia. IOP Conference Series: Earth and Environmental Science, 119(1), Article 012033. https://doi.org/10.1088/1755-1315/119/1/012033

Ball, L., & Furman, J. W. (1972). Electroejaculation of the bull. The Bovine Practitioner, 7, 46–48. https://doi.org/10.21423/bovine-vol1972no7p46-48

Barth, A. D. (2018). Review: The use of bull breeding soundness evaluation to identify subfertile and infertile bulls. Animal, 12(S1), s158–s164. https://doi.org/10.1017/S1751731118000538

Beran, J., Stádník, L., Bezdíček, J., Louda, F., Čítek, J., & Ducháček, J. (2012). Effect of sire and extender on sperm motility and share of live or dead sperm in bulls’ fresh ejaculate and in AI doses after thawing. Archives Animal Breeding, 55(3), 207–218. https://doi.org/10.5194/AAB-55-207-2012

Bompart, D., García-Molina, A., Valverde, A., Caldeira, C., Yániz, J., Núñez de Murga, M., & Soler, C. (2018). CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reproduction, Fertility and Development, 30(6), 810–819. https://doi.org/10.1071/RD17551

Bompart, D., Vázquez, R., Gómez, R., Valverde, A., Roldán, E. R. S., García-Molina, A., & Soler, C. (2019). Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Animal Reproduction Science, 209, Article 106169. https://doi.org/10.1016/J.ANIREPROSCI.2019.106169

Broekhuijse, M. L. W. J., Šoštarić, E., Feitsma, H., & Gadella, B. M. (2011). Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology, 76(8), 1473–1486.e1. https://doi.org/10.1016/j.theriogenology.2011.05.040

Büyükleblebici, S., Barbaros Tuncer, P., Numan Bucak, M., Eken, A., Sariözkan, S., Taşdemir, U., & Ünlü Endirlik, B. (2014). Cryopreservation of bull sperm: Effects of extender supplemented with different cryoprotectants and antioxidants on sperm motility, antioxidant capacity and fertility results. Animal Reproduction Science, 150(3–4), 77–83. https://doi.org/10.1016/j.anireprosci.2014.09.006

Caldeira, C., Hernández-Ibáñez, S., Valverde, A., Martin, P., Herranz-Jusdado, J. G., Gallego, V., Asturiano, J. F., Dzyuba, B., Pšenička, M., & Soler, C. (2019). Standardization of sperm motility analysis by using CASA-Mot for Atlantic salmon (Salmo salar), European eel (Anguilla anguilla) and Siberian sturgeon (Acipenser baerii). Aquaculture, 502, 223–231. https://doi.org/10.1016/j.aquaculture.2018.12.001

Calderón-Calderón, J., Sevilla, F., Roldan, E. R. S., Barquero, V., & Valverde, A. (2022). Influence of fat-soluble vitamin intramuscular supplementation on kinematic and morphometric sperm parameters of boar ejaculates. Frontiers in Veterinary Science, 9, Article 908763. https://doi.org/10.3389/FVETS.2022.908763

Clermont, Y. (1972). Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiological Reviews, 52(1), 198–236. https://doi.org/10.1152/physrev.1972.52.1.198

Contri, A., Zambelli, D., Faustini, M., Cunto, M., Gloria, A., & Carluccio, A. (2012). Artificial neural networks for the definition of kinetic subpopulations in electroejaculated and epididymal spermatozoa in the domestic cat. Reproduction, 144(3), 339–347. https://doi.org/10.1530/REP-12-0125

Fernandes, M., Rodríguez Hernández, P., Simões, J., & Barbas, J. P. (2021). Effects of three semen extenders, breeding season month and freezing–thawing cycle on spermatozoa preservation of portuguese Merino sheep. Animals, 11(9), Article 2619. https://doi.org/10.3390/ANI11092619

Fernandes Júnior, G. A., Alves Silva, D., Macedo Mota, L. F., Pinto de Melo, T., Simielli Fonseca, L. F., dos Santos Silva, D. B., Carvalheiro, R., & Galvão Albuquerque, L. (2022). Sustainable intensification of beef production in the tropics: The role of genetically improving sexual precocity of heifers. Animals, 12(2), Article 174. https://doi.org/10.3390/ani12020174

Fuerst-Waltl, B., Schwarzenbacher, H., Perner, C., & Sölkner, J. (2006). Effects of age and environmental factors on semen production and semen quality of Austrian Simmental bulls. Animal Reproduction Science, 95(1–2), 27–37. https://doi.org/10.1016/J.ANIREPROSCI.2005.09.002

Gadea, J. (2003). Review: semen extenders used in the artificial inseminarion of swine. Spanish Journal of Agricultural Research, 1(2), 17–27. https://doi.org/10.5424/sjar/2003012-17

Gadea, J., Sellés, E., & Marco, M. A. (2004). The predictive value of porcine seminal parameters on fertility outcome under commercial conditions. Reproduction in Domestic Animals, 39(5), 303–308. https://doi.org/10.1111/j.1439-0531.2004.00513.x

García, W., Tabarez, A., & Palomo, M. J. (2017). Effect of the type of egg yolk, removal of seminal plasma and donor age on ram sperm cryopreservation. Animal Reproduction, 14(4), 1124–1132. http://doi.org/10.21451/1984-3143-AR916

Hahn, K., Failing, K., & Wehrend, A. (2019). Effect of temperature and time after collection on buck sperm quality. BMC Veterinary Research, 15(1), Article 355. https://doi.org/10.1186/s12917-019-2135-y

Hernández-Avilés, C., Serafini, R., Love, C. C., Teague, S. R., LaCaze, K. A., Lawhon, S. D., Wu, J., Blanchard, T. L., & Varner, D. D. (2018). The effects of antibiotic type and extender storage method on sperm quality and antibacterial effectiveness in fresh and cooled-stored stallion semen. Theriogenology, 122, 23–29. https://doi.org/10.1016/J.THERIOGENOLOGY.2018.08.022

Ibănescu, I., Leiding, C., Ciornei, Ş. G., Roşca, P., Sfartz, I., & Drugociu, D. (2016). Differences in CASA output according to the chamber type when analyzing frozen-thawed bull sperm. Animal Reproduction Science, 166, 72–79. https://doi.org/10.1016/j.anireprosci.2016.01.005

Ilacqua, A., Izzo, G., Emerenziani, G. P., Baldari, C., & Aversa, A. (2018). Lifestyle and fertility: the influence of stress and quality of life on male fertility. Reproductive Biology and Endocrinology, 16(1), Article 115. https://doi.org/10.1186/S12958-018-0436-9

Kondracki, S., Iwanina, M., Wysokińska, A., & Huszno, M. (2012). Comparative analysis of Duroc and Pietrain boar sperm morphology. Acta Veterinaria Brno, 81(2), 195–199. https://doi.org/10.2754/avb201281020195

Kumar, P., Saini, M., Kumar, D., Balhara, A. K., Yadav, S. P., Singh, P., & Yadav, P. S. (2015). Liposome-based semen extender is suitable alternative to egg yolk-based extender for cryopreservation of buffalo (Bubalus bubalis) semen. Animal Reproduction Science, 159, 38–45. https://doi.org/10.1016/J.ANIREPROSCI.2015.05.010

Kumar Paul, R., Balaganur, K., Kumar, D., & Singh, R. (2019). Mimicking the cauda epididymal plasma-like osmolality in extender improves liquid preservation of ram semen at 3-5°C. Systems Biology in Reproductive Medicine, 65(6), 474–482. https://doi.org/10.1080/19396368.2019.1642416

Leugoué Kameni, S., Meutchieye, F., & Ngoula, F. (2021). Liquid storage of ram semen: associated damages and improvement. Open Journal of Animal Sciences, 11, 473–500. https://doi.org/10.4236/OJAS.2021.113033

Łukaszewicz, E., Jerysz, A., & Kowalczyk, A. (2020). Effect of semen extenders on viability of ISA Brown and Hubbard Flex roosters’ sperm stored for 24 h. Poultry Science, 99(5), 2766–2774. https://doi.org/10.1016/J.PSJ.2019.12.055

Majić Balić, I., Milinković-Tur, S., Samardžija, M., & Vince, S. (2012). Effect of age and environmental factors on semen quality, glutathione peroxidase activity and oxidative parameters in simmental bulls. Theriogenology, 78(2), 423–431. https://doi.org/10.1016/j.theriogenology.2012.02.022

Morrell, J. M., Valeanu, A. S., Lundeheim, N., & Johannisson, A. (2018). Sperm quality in frozen beef and dairy bull semen. Acta Veterinaria Scandinavica, 60(1) Article 41. https://doi.org/10.1186/s13028-018-0396-2

Mortimer, S. T., van der Horst, G., & Mortimer, D. (2015). The future of computer-aided sperm analysis. Asian Journal of Andrology, 17(4), 545–553. https://doi.org/10.4103/1008-682X.154312

Murphy, E., Eivers, B., O’Meara, C. M., Lonergan, P., & Fair, S. (2018). Effect of increasing equilibration time of diluted bull semen up to 72 h prior to freezing on sperm quality parameters and calving rate following artificial insemination. Theriogenology, 108, 217–222. https://doi.org/10.1016/j.theriogenology.2017.11.034

Murphy, C., Holden, S. A., Murphy, E. M., Cromie, A. R., Lonergan, P., & Fair, S. (2016). The impact of storage temperature and sperm number on the fertility of liquid-stored bull semen. Reproduction, Fertility and Development, 28(9), 1349–1359. https://doi.org/10.1071/RD14369

Murphy, E. M., Kelly, A. K., O’Meara, C., Eivers, B., Lonergan, P., & Fair, S. (2018). Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in holstein friesian bulls in a commercial artificial insemination centre. Journal of Animal Science, 96(6), 2408–2418. https://doi.org/10.1093/jas/sky130

Murphy, E. M., Murphy, C., O’Meara, C., Dunne, G., Eivers, B., Lonergan, P., & Fair, S. (2017). A comparison of semen diluents on the in vitro and in vivo fertility of liquid bull semen. Journal of Dairy Science, 100(2), 1541–1554. https://doi.org/10.3168/JDS.2016-11646

O’Hara, L., Hanrahan, J. P., Richardson, L., Donovan, A., Fair, S., Evans, A. C. O., & Lonergan, P. (2010). Effect of storage duration, storage temperature, and diluent on the viability and fertility of fresh ram sperm. Theriogenology, 73(4), 541–549. https://doi.org/10.1016/j.theriogenology.2009.10.009

Pongsiri, W., Rungruangsak, J., Pant, S. D., & Stephen, C. P. (2020). The effect of false mount on quality of frozen-thawed semen in Bos indicus beef bulls. Journal of Veterinary Medical Science, 82(5), 673–677. https://doi.org/10.1292/JVMS.20-0025

Romano, J. E., Mari, G., Stradaioli, G., & Mislei, B. (2021). Effect of fasting prior to electroejaculation on behavioral responses and reproductive parameters in young Simmental bulls. Theriogenology, 173, 19–22. https://doi.org/10.1016/J.THERIOGENOLOGY.2021.05.019

Şahin, D., Baştan, İ., Çil, B., Tekín, K., Akçay, E., Daşkın, A., & Stelletta, C. (2020). The number of false mounting affects the quality of semen in bulls. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi, 60(1), 9–14. https://doi.org/10.46897/LAHAED.701388

Schenk, J. L. (2018). Review: Principles of maximizing bull semen production at genetic centers. Animal, 12(S1), s142–s147. https://doi.org/10.1017/S1751731118000472

Sikka, S. C. (2004). Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. Journal of Andrology, 25(1), 5–18. https://doi.org/10.1002/j.1939-4640.2004.tb02751.x

Siudzińska, A., & Łukaszewicz, E. (2008). Effect of semen extenders and storage time on sperm morphology of four chicken breeds. Journal of Applied Poultry Research, 17(1), 101–108. https://doi.org/10.3382/japr.2007-00048

Snoj, T., Kobal, S., & Majdic, G. (2013). Effects of season, age, and breed on semen characteristics in different Bos taurus breeds in a 31-year retrospective study. Theriogenology, 79(5), 847–852. https://doi.org/10.1016/J.THERIOGENOLOGY.2012.12.014

Staub, C., & Johnson, L. (2018). Review: Spermatogenesis in the bull. Animal, 12(1), s27–s35. https://doi.org/10.1017/S1751731118000435

Sundararaman, M. N., Kalatharan, J., & Thalik Pon Jawahar, K. (2012). Computer assisted semen analysis for quantification of motion characteristics of bull sperm during cryopreservation cycle. Veterinary World, 5(12), 723–726. https://doi.org/10.5455/vetworld.2012.723-726

Taaffe, P., O’Meara, C. M., Stiavnicka, M., Byrne, C. J., Eivers, B., Lonergan, P., & Fair, S. (2022). Increasing the frequency of ejaculate collection in young dairy bulls increases semen production and field fertility. Theriogenology, 182, 45–52. https://doi.org/10.1016/J.THERIOGENOLOGY.2022.01.030

Tatman, S. R., Neuendorff, D. A., Wilson, T. W., & Randel, R. D. (2004). Influence of season of birth on growth and reproductive development of Brahman bulls. Theriogenology, 62(1–2), 93–102. https://doi.org/10.1016/j.theriogenology.2003.07.027

Teik Chung, E. L., Nayan, N., Mohammad Nasir, N. S., Hing, P. S. A., Ramli, S., Abdul Rahman, M. H., & Hamidi Kamalludin, M. (2019). Effect of honey as an additive for cryopreservation on bull semen quality from different cattle breeds under tropical condition. Journal of Animal Health and Production, 7(4), 171–178. https://doi.org/10.17582/JOURNAL.JAHP/2019/7.4.171.178

Thundathil, J. C., Dance, A. L., & Kastelic, J. P. (2016). Fertility management of bulls to improve beef cattle productivity. Theriogenology, 86(1), 397–405. https://doi.org/10.1016/j.theriogenology.2016.04.054

Tvrdá, E., Kňažická, Z., Lukáčová, J., Schneidgenová, M., Goc, Z., Greń, A., Szabó, C., Massányi, P., & Lukáč, N. (2013). The impact of lead and cadmium on selected motility, prooxidant and antioxidant parameters of bovine seminal plasma and spermatozoa. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 48(10), 1292–1300. https://doi.org/10.1080/10934529.2013.777243

Ugur, M. R., Saber Abdelrahman, A., Evans, H. C., Gilmore, A. A., Hitit, M., Iis Arifiantini, R., Purwantara, B., Kaya, A., & Memili, E. (2019). Advances in cryopreservation of bull sperm. Frontiers in Veterinary Science, 6, Article 268. https://doi.org/10.3389/fvets.2019.00268

Valverde, A., Madrigal, M., Caldeira, C., Bompart, D., Núñez de Murga, J., Arnau, S., & Soler, C. (2019). Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analysed with a CASA-Mot system. Reproduction in Domestic Animals, 54(2), 167–175. https://doi.org/10.1111/rda.13320

Valverde, A., & Madrigal-Valverde, M. (2018). Sistemas de análisis computadorizado de semen en la reproducción animal. Agronomía Mesoamericana, 29(2), 469–484. https://doi.org/10.15517/ma.v29i2.30613

Valverde, A., Madrigal-Valverde, M., Camacho-Calvo, M., Zambrana-Jiménez, A., & López, L. (2018). Efecto de la composición racial sobre la calidad espermática de verracos. Agronomía Mesoamericana, 29(3), 485–506. https://doi.org/10.15517/ma.v29i3.32445

Valverde, A., Madrigal-Valverde, M., Lotz, J., Bompart, D., & Soler, C. (2019). Effect of video capture time on sperm kinematic parameters in breeding boars. Livestock Science, 220, 52–56. https://doi.org/10.1016/j.livsci.2018.12.008

van der Horst, G. (2020). Computer Aided Sperm Analysis (CASA) in domestic animals: Current status, three D tracking and flagellar analysis. Animal Reproduction Science, 220, Article 106350. https://doi.org/10.1016/j.anireprosci.2020.106350

Víquez, L., Barquero, V., & Valverde, A. (2021). Condiciones óptimas de análisis cinético en semen fresco de toros Brahman con un sistema CASA-Mot. Agronomía Mesoamericana, 32(3), 920–938. https://doi.org/10.15517/am.v32i3.42768

Waberski, D., Suarez, S. S., & Henning, H. (2022). Assessment of sperm motility in livestock: Perspectives based on sperm swimming conditions in vivo. Animal Reproduction Science, 246, Article 106849. https://doi.org/10.1016/j.anireprosci.2021.106849

Wu, Y., Wang, C., Tan, J., Wei, H-k., Sun, H., & Peng, J. (2019). Logistic regression analysis factors affecting sperm motility and abnormal sperm morphology in boars. Animals, 9(12), Article 1004. https://doi.org/10.3390/ANI9121004

Yodmingkwan, P., Guntaprom, S., Jaksamrit, J., & Lertchunhakiat, K. (2016). Effects of extenders on fresh and freezing semen of Boer goat. Agriculture and Agricultural Science Procedia, 11, 125–130. https://doi.org/10.1016/j.aaspro.2016.12.021

Published

2023-07-12

How to Cite

Araya-Zúñiga, I., Sevilla, F., Barquero, V., & Valverde, A. (2023). The effect of extender, age, and bovine sexual status on the sperm kinematics. Agronomía Mesoamericana, 34(3), 52597. https://doi.org/10.15517/am.2023.52597

Most read articles by the same author(s)