Agronomic and physiological evaluation in sweet potato (Ipomoea batatas) clones subjected to hydric stress conditions
DOI:
https://doi.org/10.15517/am.v32i3.42303Keywords:
growth, gas exchange, productivity, droughtAbstract
Introduction. Roots and tubers, such as sweet potatoes (Ipomoea batatas L.), are among the top six most important crops worldwide. However, this species is sensitive to stress due to water deficit. The use of drought resistant genotypes and better water management practices can enhance its’ root quality and yield. In order to enhance productivity in those environments, complementary irrigation practices can be used or genotypes with promising yield potential against these conditions can be identified. Objective. To evaluate the effect of water stress on physiological and agronomic variables in sweet potato clones. Materials and methods. A trial was conducted from April to July 2015 at the National Center for Agricultural Research, Maracay, Venezuela, with three replications under a split plot design, where the principal plot was integrated by three irrigation treatments (all cycles, two, and three first months with irrigation) and the secondary plot by three sweet potatoes clones. Variables associated with gas exchange, vegetative growth, biomass, and yield were measured. Results. The results show that sweet potato plants against drought conditions decreased their growth, foliar expansion, partially closed the stomata avoiding water losses through transpiration without affecting the variables of net assimilation rate of CO2, yield, and biomass accumulation. The best clone with increased transpiration, biomass accumulation, and yield of 18.3 t ha-1 was the 64. Irrigation throughout the crop cycle generated the highest vegetative growth with 125 leaves plant-1. Conclusions. Under water stress conditions, sweet potato plants adapted physiologically to avoid water loss through transpiration without sacrificing photosynthetic rates, with which the clones were able to accumulate aerial biomass, roots, and tuber yield similar to the irrigated crop.
Downloads
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).