Bacillus cereus isolates on the growth and nitrogen content in banana (Musa AAA)
DOI:
https://doi.org/10.15517/am.v33i3.49614Keywords:
plant growth promoting bacteria, biological nitrogen fixation, growth enhacement, alternative nutritionAbstract
Introduction. The plant growth-promoting rhizobacteria (PGPR) could be used as an alternative source to the use of conventional nitrogen fertilizers in banana (Musa AAA) cultivation. It is necessary to search for bacteria adapted to Costa Rican soil conditions and banana cultivation. Objective. To evaluate the effect of the inoculation of four Bacillus cereus isolates on the growth and nitrogen (N) content of banana seedlings under greenhouse conditions. Materials and methods. Two simultaneous experiments were carried out between April and September 2020 at the Corporacion Bananera Nacional (CORBANA) Research Center, La Rita, Limon, Costa Rica. Four isolates of B. cereus were inoculated into banana plants that were fertilized with four doses of nitrogen weekly. The design consisted of divided plots, where the main plot consisted of four levels of N: 0, 33, 66, 100 % of the dose; and the small plot consisted of the bacterial isolates and the control. The variables measured were plant height, chlorophyll content, leaf area of the third leaf, fresh and dry weight of roots, corm, pseudostem, and leaves, as well as the nitrogen content in each organ. Results. In experiment 1: the plants inoculated with the SER-23 isolate presented the highest total dry weight. In experiment 2: the highest total dry weight was observed in seedlings inoculated with the BF-98 isolate. The application of SER-23 and BF-98 bacteria significantly increased the nitrogen content in all the organs evaluated. Conclusions. The inoculation of Bacillus cereus isolates SER-23 and BF-98 stimulated the increase in biomass and nitrogen content in banana plants, this increase depended on the nitrogen availability and soil type.
Downloads
References
Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35, 869–890. https://doi.org/10.1007/s13593-015-0285-2
Azeem, M., Hassan, T. U., Tahir, M. I., Ali, A., Arockiam Jeyasundar, P. G. S., Hussain, Q., Bashir, S., Mehmood, S., & Zhang, Z. (2021). Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity. Applied Soil Ecology, 157, Article 103732. https://doi.org/10.1016/j.apsoil.2020.103732
Baset Mia, M. A., Shamsuddin, Z. H., & Mahmood, M. (2010). Use of Plant Growth Promoting Bacteria in Banana: A New Insight for Sustainable Banana Production. International Journal of Agriculture and Biology, 12(3), 459–467.
Baset Mia, M. A., Shamsuddin, Z. H., Wahab, Z., & Marziah, M. (2010). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen-free hydroponics condition. Australian Journal of Crop Science, 4(2), 85–90.
Basu, S., Rabara, R., & Negi, S. (2017). Towards a better greener future - an alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene, 12, 43–49. https://doi.org/10.1016/j.plgene.2017.07.004
Chauhan, H., Bagyaraj, D. J., Selvakumar, G., & Sundaram, S. P. (2015). Novel plant growth promoting rhizobacteria—Prospects and potential. Applied Soil Ecology, 95, 38–53. https://doi.org/10.1016/j.apsoil.2015.05.011
Cooper, J. E., & Scherer, H. W. (2012). Nitrogen fixation. In P. Marschner (Ed.), Marschner’s Mineral Nutrition of Higher Plants (3rd ed., pp. 389-408). Elsevier. https://doi.org/10.1016/B978-0-12-384905-2.00016-9
Côte, F., Tomekpe, K., Staver, C., Depigny, S., Lescot, T., & Markham, R. (2010). Agro-ecological intensification in banana and plantain (Musa spp.): an approach to develop more sustainable cropping systems for both smallholder farmers and large-scale commercial producers. Acta Horticulturae, 879, 457–463. https://doi.org/10.17660/ActaHortic.2010.879.50
da Silva, C. F. B., de Brito, T. L., Taniguchi, C. A. K., Lopes, L. A., Pinto, G. A. S., & de Carvalho, A. C. P. P. (2018). Growth-promoting potential of bacterial biomass in the banana micropropagated plants. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(11), 782–787. https://doi.org/10.1590/1807-1929/agriambi.v22n11p782-787
de Araújo, R. C., Almendagna Rodrigues, F., Nadal, M. C., de Souza Ribeiro, M., Carvalho Antônio, C. A., Rodrigues, V. A., de Souza, A. C., Pasqual, M., & Dória, J. (2021). Acclimatization of Musa spp. seedlings using endophytic Bacillus spp. and Buttiauxella agrestis strains. Microbiological Research, 248, Article 126750. https://doi.org/10.1016/j.micres.2021.126750
Díaz-Romeu, R., & Hunter, A. (1978). Metodología de muestreo de suelos, análisis químico de suelos y tejido vegetal e investigación en invernadero. Centro Agronómico Tropical de Investigación y Enseñanza. https://bit.ly/3B1IxAj
Elementar Analysensysteme. (2011). Vario macro cube Elemental Analyzer condensed manual. Elementar Analysen systeme GmbH. https://bit.ly/3v3Tf5G
Ferreira, C. M. H., Soares, H. M. V. M., & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of The Total Environment, 682, 779–799. https://doi.org/10.1016/j.scitotenv.2019.04.225
Gamez, R. M., Rodríguez, F., Madeiros Vidal, N., Ramirez, S., Vera Alvarez, R., Landsman, D., & Mariño-Ramírez, L. (2019). Banana (Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006. BMC Genomics, 20, Article 378. https://doi.org/10.1186/s12864-019-5763-5
Hassan, T. U., & Bano, A. (2015). The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. Journal of Soil Science and Plant Nutrition, 15(1), 190–201. http://doi.org/10.4067/S0718-95162015005000016
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in General Parametric models. Biometrical Journal, 50(3), 346–363. https://doi.org/10.1002/bimj.200810425
Jarrell, W. M., & Beverly, R. B. (1981). The dilution effect in plant nutrition studies. Advances in Agronomy, 34, 197–224. https://doi.org/10.1016/S0065-2113(08)60887-1
Kaur, D., Singh, G., & Sharma, P. (2020). Symbiotic Parameters, Productivity and Profitability in Kabuli Chickpea (Cicer arietinum L.) as Influenced by Application of Phosphorus and Biofertilizers. Journal of Soil Science and Plant Nutrition, 20, 2267–2282. https://doi.org/10.1007/s42729-020-00293-z
Khatoon, Z., Huang, S., Rafique, M., Fakhar, A., Kamran, M. A., & Santoyo, G. (2020). Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management, 273, Article 111118. https://doi.org/10.1016/j.jenvman.2020.111118
Kurokura, T., Hiraide, S., Shimamura, Y., & Yamane, K. (2017). PGPR improves yield of strawberry species under less-fertilized conditions. Environmental Control in Biology, 55(3), 121–128. https://doi.org/10.2525/ecb.55.121
Lenth, R., Buerkner, P., Herve, M., Love, J., Miguez, F., Riebl, H., & Singmann, H. (2021). Estimated marginal means, aka least-squares means. R Foundation for statistical computing. https://bit.ly/3S02fCO
Lobo, C. B., Juárez Tomás, M. S., Viruel, E., Ferrero, M. A., & Lucca, M. E. (2019). Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiological Research, 219, 12–25. https://doi.org/10.1016/j.micres.2018.10.012
López, A., & Espinosa, J. (1995). Manual de nutrición y fertilización del banano. International Plant Nutrition Institute, & Corporación Bananera Nacional. https://bit.ly/3czr4oY
Marcano, I. -E., Díaz-Alcántara, C. -A., Urbano, B., & González-Andrés, F. (2016). Assessment of bacterial populations associated with banana tree roots and development of successful plant probiotics for banana crop. Soil Biology and Biochemistry, 99, 1–20. https://doi.org/10.1016/j.soilbio.2016.04.013
Masood, S., Zhao, X. Q., & Shen, R. F. (2020). Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization. Scientia Horticulturae, 272, Article 109581. https://doi.org/10.1016/j.scienta.2020.109581
Mehlich, A. (1984). Mehlich 3 Soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science Plant Analysis, 15(12), 1409–1416. https://doi.org/10.1080/00103628409367568
Mekonnen, H., & Kibret, M. (2021). The roles of plant growth promoting rhizobacteria in sustainable vegetable production in Ethiopia. Chemical and Biological Technologies in Agriculture, 8, Article 15. https://doi.org/10.1186/s40538-021-00213-y
Murray, D. B. (1960). The effect of deficiencies of the major nutrients on growth and leaf analysis of the banana. Tropical Agriculture, 37, 97–106.
Naciones Unidas. (2020). Desafíos globales. Población. https://www.un.org/es/global-issues/population
Nicholls, C. I., Altieri, M. A., & Vázquez, L. A. (2015). Agroecología: Principios para la conversión y el rediseño de sistemas agrícolas. Agroecología, 10(1), 61–72. https://revistas.um.es/agroecologia/article/view/300741/216161
Organización de las Naciones Unidas para la Alimentación y la Agricultura, & Organización Mundial de la Salud. (2021). Acerca del Codex. Codex alimentarius. http://www.fao.org/fao-who-codexalimentarius/about-codex/es/
Pinheiro, J., Bates, D., DebRoy, S., Eispack, A., Heisterkamp, S., Van Willigem, B., Ranke, J., & R Core Team. (2020). nlme: Linear and nonlinear mixed effects models (R package version 3.1-148). R Foundation for statistical computing.
Posada, L. F., Ramírez, M., Ochoa-Gómez, N., Cuellar-Gaviria, T. Z., Argel-Roldan, L. E., Ramírez, C. A., & Villegas-Escobar, V. (2016). Bioprospecting of aerobic endospore-forming bacteria with biotechnological potential for growth promotion of banana plants. Scientia Horticulturae, 212, 81–90. https://doi.org/10.1016/j.scienta.2016.09.040
R Core Team. (2020). R: A language and environment for statistical computing (R 3.6.3). R Foundation for Statistical Computing. https://bit.ly/3ojkGEY
Rodríguez Morales, A. (2014). Evaluación del efecto de cepas nativas de bacillus sp., aisladas de un suelo supresivo a nemátodos, sobre el nematodo barrenador banano, Radopholus similis (Thorne), y el crecimiento de plantas de banano (Musa AAA) bajo condiciones de vivero [Tesis de Maestría, Instituto Tecnológico de Costa Rica]. Repositorio del Tecnológico de Costa Rica. https://bit.ly/3zlqOCL
Ruzzi, M., & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196, 124–134. https://doi.org/10.1016/j.scienta.2015.08.042
Segura, R. A., Serrano, E., Pocasangre, L., Acuña, O., Bertsch, F., Stoorvogel, J. J., & Sandoval, J. A. (2015). Chemical and microbiological interactions between soils and roots in commercial banana plantations (Musa AAA, cv. Cavendish). Scientia Horticulturae, 197, 66–71. https://doi.org/10.1016/j.scienta.2015.10.028
Shameer, S., & Prasad, T. N. V. K. V. (2018). Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation, 84, 603–615. https://doi.org/10.1007/s10725-017-0365-1
Singh, J. S., Pandey, V. C., & Singh, D. P. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment, 140(3–4), 339–353. https://doi.org/10.1016/j.agee.2011.01.017
Singh Meena, V., Kumari Meena, S., Prakash Verma, J., Kumar, A., Aeron, A., Kumar Mishra, P., Kumar Bisht, J., Pattanayak, A., Naveed, M., & Dotaniya, M. L. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering, 107, 8–32. https://doi.org/10.1016/j.ecoleng.2017.06.058
Singh, R. K., Singh, P., Li, H. B., Song, Q. Q., Guo, D. J., Solanki, M. K., Verma, K. K., Malviya, M. K., Song, X. P., Lakshmanan, P., Yang, L. T., & Li, Y. R. (2020). Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: A comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biology, 20, Article 220. https://doi.org/10.1186/s12870-020-02400-9
Thomas, G. W. (1983). Exchangeable cations. In A. L. Page (Ed.), Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2.2. (2nd ed., pp. 159–165). American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c9
United States International Trade Commission. (2020). Global economic impact of missing and low pesticide maximum residue (Vol 1). https://www.usitc.gov/publications/332/pub5071.pdf
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).