Soil cover on nutrient concentration in an agroecosystem in Napo, Ecuador
DOI:
https://doi.org/10.15517/am.2023.54138Keywords:
Amazon, primary forest, concentration, IngaAbstract
Introduction. Nutrient loss in different soil cover generates a decrease in productivity in agroforestry systems in tropical forests. Objective. To determine the effect of soil cover over a two-year period on nutrient concentrations in the agroecosystem of the Amazonian Research and Production Experimental Center. Materials and methods. This study was conducted at the Amazonian Research and Production Experimental Center in Napo, Ecuador. Two plots of primary forest were established with the following soil covers: a) guava (Inga sp.) and b) melastomataceae. Two random soil samplings were conducted, one in 2019 (four samples per cover) and another in 2021 (six samples per cover). Concentrations of nitrogen, phosphorus, potassium, calcium, and organic matter were analyzed. An analysis of variance was applied to determine significant differences between the soil coverages and sampling periods. Pearson correlation analysis was performed to determine relationships between the concentrations of different nutrients. Results. Significant differences (p<0.05) were observed for soil covers in concentrations of organic matter and phosphorus, which were higher in the melastomataceae plot. In 2021, significant differences were observed for potassium, phosphorus, and nitrogen concentrations. The year x cover interaction in guava cover showed an increase in nutrient concentrations after two years. Significant correlations were found between potassium concentrations and the other nutrients, as well as between organic matter and nitrogen concentrations. Conclusion. Soil cover influenced nutrient concentrations, which varied between years. The primary forest exhibited the highest nutrient loss, and the Inga cover showed an increase in nutrient concentrations over time.
Downloads
References
Abril Saltos, R. V., López Torres, A. C., & Reyes Mera, J. J. (2017). Influencia del dosel y sotobosque en pérdida de suelo por escorrentía en bosque de realce. Ingeniería Hidráulica y Ambiental, 38(2), 17–28. https://riha.cujae.edu.cu/index.php/riha/article/view/378/311
Aguilar-Correa, C., Valencia-Fuentes, C., Huentemilla-Rebolledo, M., Valderrama-González, D., Rojas-Correa, Á., Méndez-Contreras, M., & Tapia-Hernández, C. (2019). Percepción sobre servicios ecosistémicos culturales asociados al bosque nativo por parte de un grupo universitario de estudiantes de pedagogía. Revista Electrónica Educare, 23(3), 1–24. https://doi.org/10.15359/ree.23-3.19
Bravo, C., Ramírez, A., Marín, H., Torres, B., Alemán, R., Torres, R., Navarrete, H., & Changoluisa, D. (2017). Factores asociados a la fertilidad del suelo en diferentes usos de la tierra de la Región Amazónica Ecuatoriana. Revista Electrónica Veterinaria, 18(11), 1–16.
Crespo, G., Rodríguez, I., & Look, S. (2006). La fertilidad del suelo y la producción de biomasa. En R. S. Herrera, I. Rodríguez, & G. Febles (Eds.), Fisiología, producción de biomasa y sistemas silvopastoriles en pastos tropicales. Abono orgánicoy biogás (pp. 223–278). Editorial del Instituto de Ciencia Animal.
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2020). InfoStat (versión 2020) [software]. Universidad Nacional de Córdoba. http://www.infostat.com.ar
Díaz-Prieto, L. A., Vázquez-Luna, D., Jarquín-Sánchez, A., Velázquez-Silvestre, A., & Lara-Rodríguez, D. A. (2017). Especies tropicales (Fabaceae): inversión asociada al aporte rizosférico de nitrógeno y fósforo al suelo. Agro Productividad, 10(12), 116–120. https://www.revista-agroproductividad.org/index.php/agroproductividad/article/view/47
Fuentes Molina, N., & Rodríguez Barrios, J. A. (2012). Eficiencia en el retorno potencial de nutrientes vía hojarasca de un bosque tropical de ribera. Sierra Nevada de Santa Marta Colombia. Acta Biológica Colombiana, 17(1), 51–66. https://revistas.unal.edu.co/index.php/actabiol/article/view/20656/30404
Gaspar-Santos, E. S., González-Espinosa, M., Ramírez-Marcial, N., & Álvarez-Solís J. D. (2015). Acumulación y descomposición de hojarasca en bosques secundarios del sur de la Sierra Madre de Chiapas, México. Bosque (Valdivia), 36(3), 467–480. https://doi.org/10.4067/S0717-92002015000300013
Giannini, A. P., Andriulo, A. E., Wyngaard, N. & Irizar, A. B. (2022). Fracciones de fósforo edáfico bajo diferentes manejos. Ciencia del Suelo, 40(2), 196–207. http://www.ojs.suelos.org.ar/index.php/cds/article/view/739
Herrera Villafranca, M. (2012). Métodos estadísticos alternativos de análisis con variables discretas y categóricas en investigaciones agropecuarias. Editorial Universitaria.
International Business Machine Corp. (2020). IBM SPSS statistics for Windows (Version 22.0) [software]. https://www.ibm.com/support/pages/spss-statistics-220-available-download
Jiménez, L., Gusmán J., Capa-Mora, D., Quichimbo, P., Mezquida, E. T., Benito, M., & Rubio, A. (2017). Riqueza y diversidad vegetal en un bosque siempreverde piemontano en los Andes del sur del Ecuador. Bosques Latitud Cero, 7(1), 17–29. https://revistas.unl.edu.ec/index.php/bosques/article/view/185
Mantero-García, H. D., Gómez-Guerrero, A., Gavi-Reyes, F., Zamora-Morales, B. P., & Ramírez-Ayala, C. (2019). ¿Es sustentable el aprovechamiento de tierra de hoja en bosques de encino? Madera y Bosques, 25(3), Artículo e2531807. https://doi.org/10.21829/myb.2019.2531807
Galeas, R., & Guevara, J. E. (Eds.) (2012). Sistemas de clasificación de ecosistemas del Ecuador continental. Ministerio de Ambiente del Ecuador. https://www.ambiente.gob.ec/wp-content/uploads/downloads/2012/09/LEYENDA-ECOSISTEMAS_ECUADOR_2.pdf
Monárrez-González, J. C., Pérez-Verdín, G., López-González, C., Márquez-Linares, M. A., & González-Elizondo, M. (2018). Efecto del manejo forestal sobre algunos servicios ecosistémicos en los bosques templados de México. Madera y Bosques, 24(2), Artículo e2421569. https://doi.org/10.21829/myb.2018.2421569
Pontificia Universidad Católica del Ecuador. (2020). Regiones Naturales. https://bioweb.bio/faunaweb/amphibiaweb/RegionesNaturales
Prause, J., Fernández López, C., Conteras Leiva, S. M., & Gallardo Lancho, J. F. (2012). Aporte y descomposición de hojas y reabsorción de N, P y Ken un bosque primario de Schinopsis Balansae Engler con y sin manejo silvopastoril en el parque Chaqueño húmedo. Facena, 28, 41–50. http://doi.org/10.30972/fac.280900
Quinto Mosquera, H., Moreno Hurtado, F., Caicedo Moreno, H. Y., & Pérez Luis, M. T. (2016). Biomasa de raíces finas y fertilidad del suelo en bosques pluviales tropicales del pacífico colombiano. Colombia Forestal, 19(1), 53–66. http://doi.org/10.14483/udistrital.jour.colomb.for.2016.1.a04
Rimski-Korsakov, H., & Álvarez, C.R. (2016). Materia orgánica del suelo. En C. R. Álvarez, & H. Rimski-Korsakov (Eds.), Manejo de la fertilidad del suelo en planteos orgánicos (pp. 59–69). Editorial Facultad de Agronomía. https://www.ciaorganico.net/documypublic/126_libro_fertilidad_de_suelos-pvo_isbn.pdf
Rodrigues da Silva, E., Iria da Costa A., M., Lima Neves, A., Uguen, K., Antonio de Oliveira, L., & Sena Alfaia, S. (2021). Organic fertilization with residues of Cupuassu (Theobroma grandiflorum) and Inga (Inga edulis) for improving soil fertility in central amazonia. In M. Turan, & E. Yildirim (Eds.), New generation of organic fertilizers. Intech. https://doi.org/10.5772/intechopen.100423
Schulte, E.E., & Hopkins, B.G. (1996). Estimation of soil organic matter by weight loss-on-ignition. In F. R. Magdoff, M. A. Tabatabai, & E. A. Hanlon (Eds.), Soil organic matter: Analysis and interpretation (Vol. 46, Chapter 3, pp. 21–31). Soil Science Society of America, Inc. https://doi.org/10.2136/sssaspecpub46.c3
SYSTAT Software Inc. (2002). Table curve 2D (version 5.01). SYSTAT Software Inc.
Universidad Estatal Amazónica. (s.f.). Centro Experimental de Investigación y Producción Amazónica. Recuperado el 10 de febrero del 2023 de: https://www.uea.edu.ec/?page_id=2376
Verçoza da Silva D., Kamel de Oliveira T., Ferreira Kusdra, J., Taís Köln, F., Alencar de Lima, A., & Alencar da Costa, K. B. (2015). Decomposition of ground biomass of secondary forest and yield of annual crops in no tillage system. Revista Ceres, 62(6), 568–576. http://doi.org/10.1590/0034-737X201562060009
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ricardo Vinicio Abril Saltos, Daysi Changoluisa Vargas, Leobel Morell Perez, Mayerling Kirina Toscano Guatatoca, Brigitte Tatyana Pérez Tuti
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).