La producción de gas in vitro para estimar la energía neta de lactancia

Producción de gas in vitro y energía neta de lactancia

Autores/as

DOI:

https://doi.org/10.15517/am.v31i2.38497

Palabras clave:

forrajes, nutrición animal, ganado de leche, digestión ruminal, rumen

Resumen

Introducción. El contenido energético de los forrajes es limitante para la producción de leche en sistemas de pastoreo, y la energía neta de lactancia es el parámetro más utilizado para expresar los requerimientos energéticos de los bovinos lecheros. Objetivo. Comparar el valor de energía neta de lactancia de alimentos, obtenido a partir de ecuaciones basadas en la producción de gas in vitro, con respecto a lo estimado por el modelo del National Research Council (NRC). Materiales y métodos. El experimento se llevó a cabo de agosto a diciembre del 2017 en el Centro de Investigación en Nutrición Animal de la Universidad de Costa Rica, San José, Costa Rica. Se determinó la producción de gas in vitro en muestras de pasto estrella, ryegrass, ensilado de maíz, morera y concentrado. Se evaluaron cinco ecuaciones que incorporaron la producción acumulada de gas a las 24 horas. Resultados. La producción de gas mostró diferencias (p<0,001) entre alimentos. El mayor volumen de gas producido y contenido de la energía neta de lactancia (ENL1x) se presentaron con el concentrado. La ecuación 3 mostró la mayor precisión en la estimación de ENL que obtuvo el índice de correlación de concordancia mayor (r2=0,92). La utilización de ecuaciones por tipo de alimento mejoró la precisión en la predicción de ENL. La ecuación 1 fue más precisa en alimento balanceado, mientras que en ensilado de maíz fue la ecuación 4, y en morera, pasto estrella y ryegrass la ecuación 3. El índice de concordancia de Lin explicó mejor las diferencias en predicción de ENL que el índice de correlación de Pearson. Conclusión. La producción de gas in vitro con la aplicación de la ecuación 3, fue un método confiable para estimar el contenido de ENL1x en cinco alimentos utilizados en vacas lecheras.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdelhadi, L. 2007. Los silajes en la producción animal: importancia de la calidad. En: R. Trejos et al., editores, Memoria XI Seminario Manejo y utilización de pastos y forrajes en sistemas de producción animal. UPEL, Barquisimeto, VEN. p. 114-131.

AOAC (Association of Official Agricultural Chemists). 2006. Official methods of analysis. 18th ed. Rev. 1. AOAC Int., Gaithersburg, MD, USA.

AOCS (American Oil Chemists Society). 2005. Official Procedure. Approved Procedure Am 5-04, Rapid determination of oil/fat utilizing high temperature solvent extraction. AOCS, Urbana, IL, USA.

Bakhashwain, A., S.M.A. Sallam, and A. Allam. 2010. Nutritive value assessment of some Saudi Arabian foliages by gas production technique in vitro. JKAU: Met., Env. Arid Land Agric. Sci. 21:65-80. 2010. doi:10.4197/Met.21-1.5

Boga, M., S. Yurtseven, U. Kilic, S. Aydemir, and T. Polat. 2014. Determination of nutrient contents and in vitro gas production values of some legume forages grown in the Harran Plain saline soils. Asian-Australas. J. Anim. Sci. 27:825-831. doi:10.5713/ajas.2013.13718

Boschini, C. 2003. Características físicas y valor nutritivo del ensilaje de morera (Morus alba) mezclado con forraje de maíz. Agron. Mesoam. 14:51-57. doi:10.15517/am.v14i1.11988

Boschini-Figueroa, C. 2001. Degradabilidad in situ de la materia seca, proteína y fibra del forraje de morera (Morus alba). Agron. Mesoam. 12:79-87. doi:10.15517/am.v12i1.17290

Boschini-Figueroa, C. 2006. Nutrientes digeribles, energía neta y fracciones proteicas de la morera (Morus alba) aprovechables en vacas lecheras. Agron. Mesoam. 17:141-150. doi:10.15517/am.v17i2.5154

Boschini-Figueroa, C., y C.F. Vargas-Rodríguez. 2009. Rendimiento y calidad de la morera (Morus alba) fertilizada con nitrógeno, fósforo y potasio. Agron. Mesoam. 20:285-296. doi:10.15517/am.v20i2.4945

Carrasco, J.L., y L. Jover. 2004. Métodos estadísticos para evaluar la concordancia. Med. Clin. 122(Supl 1):28-34.

Cone, J., A. Van-Gelder, and F. Driehuis. 1997. Description of gas production profiles with a three-phasic model. Anim. Feed Sci. Technol. 66:31-45. doi:10.1016/S0377-8401(96)01147-9

Cone, J., A. Van-Gelder, G. Visscher, and L. Oudshoom. 1996. Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim. Feed Sci. Technol. 61:113-128. doi:10.1016/0377-8401(96)00950-9

Cornou, C., I. Drejer, I. Hindrichsen, H. Worgan, E. Bakewell, D. Yáñez, L. Abecia, F. Tagliapietra, M. Cattani, C. Ritz, and H. Hansen. 2013. A ring test of a wireless in vitro gas production system. Anim. Prod. Sci. 53:585-592. doi:10.1071/AN12091

Elghandour, M.M.Y., J.C. Vázquez, A.Z.M. Salem, A.E. Kholif, M.M. Cipriano, L.M. Camacho, and O. Márquez. 2017. In vitro gas and methane production of two mixed rations influenced by three different cultures of Saccharomyces cerevisiae. J. Appl. Anim. Res. 45(1):389-395. doi:10.1080/09712119.2016.1204304

Elmenofy, E.K., M.I. Bassiouni, E.B. Belal, H.M. A. Gaafar, E.M. Abdel-Raouf, and S.A. Mahmoud. 2012. Improving the nutritive value of ensiled green rice straw 2- In vitro gas production. Nat. Sci. 10(12):86-91.

Getachew, G., M. Blümmel, P. Makkar, and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim. Feed Sci. Technol. 72:261-281. doi:10.1016/S0377-8401(97)00189-2

Getachew, G., P. Makkar, and K. Becker. 2002. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometrical relationship between short chain fatty acid and in vitro gas production. J. Agric. Sci. 139:341-352. doi:10.1017/S0021859602002393

Getachew, G., P. Robinson, E. De-Peters, and S. Taylor. 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 111:57-71. doi:10.1016/S0377-8401(03)00217-7

Haddi, M., E. Filacorda, K. Meniai, F. Rollin, and P. Susmel, P. 2003. In vitro fermentation kinetics of some halophyte shrubs sampled at three stages of maturity. Anim. Feed Sci. Technol. 104:215-225. doi:10.1016/S0377-8401(02)00323-1

Kamalak, A., O. Canbolat, Y. Gurbuz, and O. Ozay. 2005. Comparison of in vitro gas production technique with in situ nylon bag technique to estimate dry matter degradation. Czech J. Anim. Sci. 50(2):60-67. doi:10.17221/3996-CJAS

Krishnamoorthy, U., H. Soller, H. Steingass, and K.H. Menke. 1995. Energy and protein evaluation of tropical feedstuffs for whole tract and ruminal digestion by chemical analyses and rumen inoculum studies in vitro. Anim. Feed Sci. Technol. 52:177-188. doi:10.1016/0377-8401(95)00734-5

Licitra, G., T.M. Hernández, and P.J. Van-Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358. doi:10.1016/0377-8401(95)00837-3

Lin, L. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255-268. doi:10.2307/2532051

Macaya, S., y A. Rojas-Bourillón. 2009. Uso de granos secos con solubles (DDGS) provenientes de la destilería del maíz en suplementos para vacas lactantes en pastoreo de Estrella Africana (Cynodon nlemfuensis). Agron. Costarricense 33:237-248.

Menke, K., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55.

Muetzel, S., C. Hunt, and M.H. Tavendale. 2014. A fully automated incubation system for the measurement of gas production and gas composition. Anim. Feed Sci. Technol. 196:1-11. doi:10.1016/j.anifeedsci.2014.05.016

NRC (National Research Council). 2001. Nutrients requirements in dairy cattle. 7th ed. rev. The National Academies Press, WA, USA.

Pearson, K. 1895. Notes on regression and inheritance in the case of two parents. Proc. Royal Soc. London 58:240-242.

RF ANKOM. s.f. RF ANKOM gas production system operator`s manual. ANKOM. https://www.ankom.com/sites/default/files/document-files/RF_Manual.pdf (accessed Jun. 16, 2019).

Sánchez, J. 2007. Utilización eficiente de las pasturas tropicales en la alimentación del ganado lechero. AVPA, VEN. http://www.avpa.ula.ve/eventos/xi_seminario/Conferencias/Articulo-2.pdf (cosultado 16 jun. 2019).

Sallam, S.M.A., M.E.A. Nasser, A.M. El-Waziry, I.C.S. Bueno, and A.L. Abdalla. 2007. Use of an in vitro rumen gas production technique to evaluate some ruminant feedstuffs. J. Appl. Sci. Res. 3:34-41. doi:10.1016/j.anifeedsci.2005.04.034

Saricicek, B. 2010. The effect on silage quality, fermentation kinetics, gas production, in vitro energy value, in vitro dry matter and organic matter digestibility of silage of different additives. Trends Anim. Vet. Sci. 1(2):79-85.

SAS Institute Inc. 2011. SAS User’s guide: Statistics (Versión 9.2 Ed.). SAS Institute Inc., Cary, NC, USA.

Seker, E. 2002. The determination of the energy values of some ruminant feeds by using digestibility trial and gas test. Rev. Med. Vet. 153(5):323-328.

Sherasia, P., M. Garg, B. Phondba, and S. Hossain. 2015. Estimation of metabolizable energy, net energy-lactation and total digestible nutrients of some ruminant feedstuffs using in vitro gas production technique. Indian J. Dairy Sci. 68:370-375. doi:10.5146/ijds.v68i4.43379

Vásquez, A. 1982. Estudio detallado de los suelos de la Estación Experimental de Ganado Lechero El Alto. Tesis LIc., Universidad de Costa Rica, San José, CRI.

van-Gelder, A., M. Hetta, M. Machado-Rodrigues, J. De-Boever, H. Den-Hartig, C. Rymer, M. van-Oostrum, R. van-Kaathoven, and J. Cone. 2005. Ranking of in vitro fermentability of 20 feedstuffs with an automated gas production technique: Results of a ring test. Anim. Feed Sci. Technol. 123-124:243-253. doi:10.1016/j.anifeedsci.2005.04.044

Van-Soest, P., J.B. Robertson, and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. doi:10.3168/jds.S0022-0302(91)78551-2

VDLUFA (Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten) (ed.). 2012. Handbuch der landwirtschaftlichen versuchs- und untersuchungmethodik (VDLUFA-Methodenbuch). Bd. III. Die chemische untersuchung von futtermitteln. VDLUFA-Verlag, Darmstadt, DEU.

Villalobos, L., y J. Arce. 2014. Evaluación agronómica y nutricional del pasto estrella africana (Cynodon nlemfuensis) en la zona de Monteverde, Puntarenas, Costa Rica. II. Valor nutricional. Agron. Costarricense 38:133-145.

Villalobos, L., y J. Sánchez. 2010. Evaluación agronómica y nutricional del pasto ryegrass perenne tetraploide (Lolium perenne) producido en lecherías de las zonas altas de Costa Rica. II. Valor nutricional. Agron. Costarricense 34:43-52.

Yáñez-Ruiz D.R., A. Bannink, J. Dijkstra, E. Kebreab, D.P. Morgavi, P. O’Kiely, C.K. Reynolds, A. Schwarm, K.J. Shingfield, Z. Yu, and A.N. Hristov. 2016. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants— a review. Anim. Feed Sci. Technol. 216:1-18. doi:10.1016/j.anifeedsci.2016.03.016

Zar, J. 2010. Biostatistical analysis. 5th ed. Prentice Hall, IL, USA.

Publicado

2020-05-01

Cómo citar

Sobalvarro Mena, J. L., Elizondo Salazar, J. A., & Rojas Bourillón, A. (2020). La producción de gas in vitro para estimar la energía neta de lactancia: Producción de gas in vitro y energía neta de lactancia. Agronomía Mesoamericana, 31(2), 311–328. https://doi.org/10.15517/am.v31i2.38497