Ventilación natural en invernadero con mallas anti-insecto evaluadas con un modelo computacional de fluidos

Uso de pantallas anti-insectos en un invernadero colombiano

Autores/as

DOI:

https://doi.org/10.15517/am.v31i3.40782

Palabras clave:

tasa de ventilación, microclima, flujo de aire, temperatura, humedad relativa

Resumen

Introducción. En Colombia, la producción hortícola en el trópico bajo es limitada principalmente por factores bióticos como el ataque de plagas, patógenos y factores abióticos como valores extremos de temperatura, radiación solar, viento y precipitación. Objetivo. Evaluar dos tipos de mallas anti-insecto en las áreas de ventilación de un invernadero colombiano ventilado de formado natural con el fin de analizar el efecto sobre las tasas de ventilación y el microclima generado. Materiales y métodos. El Estudio se desarrolló en el año 2019 en el departamento de Magdalena, Colombia. El enfoque metodológico incluyó el uso de modelo computacional de fluidos (CFD) 2-D para el desarrollo de quince simulaciones en estado estacionario, el modelo CFD fue validado experimentalmente en el prototipo del invernadero real evaluado. Resultados. Los parámetros de bondad de ajuste entre los datos medidos y simulados mostraron valores de error medio absoluto (MAE) y la raíz del error cuadrático medio (RMSE) para la temperatura y la humedad relativa de 0,15 y 0,32 °C, 2,41 y 2,73 %, respectivamente. Hubo una reducción promedio de las tasas de ventilación entre 55,3 y 77,1 % en comparación con el escenario de referencia que no incluyó la presencia de mallas anti-insecto, esta reducción generó modificaciones en el comportamiento de las variables temperatura y humedad relativa en el interior del invernadero, con una marcada distribución espacial heterogénea. Conclusión. Las condiciones micro climáticas más inadecuadas se presentaron en escenarios de baja velocidad de viento exterior, por lo tanto, es recomendable seleccionar e implementar algún tipo de malla anti-insecto en las áreas de ventilación de un invernadero basado en el comportamiento local de esta variable.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ANSYS. 2017. ANSYS fluent Software: CFD simulation. ANSYS: 1 User Manual, release 18.1. ANSYS Inc, Canonsburg, PA, USA.

Baeza, E.J., J.J. Pérez-Parra, J.I. Montero, B.J. Bailey, J.C. López, and J.C. Gázque. 2009. Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst. Eng. 10:86-96. doi:10.1016/J.BIOSYSTEMSENG.2009.04.008

Baeza, E.J., A. Sapounas, C. Stanghellini, S. Bonachela , J. Hernández, J.I. Montero, J.C. López, M.R. Granados, P. Muñoz, P. Lorenzo, and P. Fernández-del-Olmo. 2017. Numerical simulation of the effect of different mulches on the heat storage capacity of a Mediterranean greenhouse soil. Acta Hortic. 1170:119-128. doi:10.17660/ActaHortic.2017.1170.13

Bañuelos-Ruedas, F., C. Angeles-Camacho, and S. Rios-Marcuello. 2010. Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renew. Sustain. Energy Rev. 142383-2391. doi:10.1016/j.rser.2010.05.001

Baptista, F.J., B.J. Bailey, and J.F. Meneses. 2008. Comparison of humidity conditions in unheated tomato greenhouses with different natural ventilation management and implications for climate and Botrytis cinerea control. Acta Hortic. 803:1013-1020. doi:10.17660/ActaHortic.2008.801.120

Bartzanas, T., T. Boulard, and C. Kittas. 2002. Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings. Comput. Electron. Agric. 34:207-221. doi:10.1016/S0168-1699(01)00188-0

Bartzanas, T., T. Boulard, and C. Kittas. 2004. Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosyst. Eng. 88:479-490. doi:10.1016/j.biosystemseng.2003.10.006

Bournet, P.E., and T. Boulard. 2010. Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Comput. Electron. Agric. 74:195-217. doi:10.1016/j.compag.2010.08.007

Campen, J.B. 2005. Greenhouse design applying CFD for Indonesian conditions. Acta Hortic. 691:419-424. doi:10.17660/ActaHortic.2005.691.50

Chen, J., F. Xu, D. Tan, Z. Shen, L. Zhang, and Q. Al. 2015. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Appl. Energy 141:106-118. doi:10.1016/J.APENERGY.2014.12.026

Etheridge, D. 2011. Natural ventilation of buildings: Theory, measurement and design. John Wiley & Sons, Ltda., Hoboken, NJ, USA.

Fatnassi, H., T. Boulard, and L. Bouirden. 2003. Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens. Agric. For. Meteorol. 118:97-111. doi:10.1016/S0168-1923(03)00071-6

Fatnassi, H., T. Boulard, C. Poncet, and M. Chave. 2006. Optimisation of greenhouse insect screening with computational fluid dynamics. Biosyst. Eng. 93:301-312. doi:10.1016/j.biosystemseng.2005.11.014

Flores-Velazquez, J., and J.I. Montero. 2008. Computational fluid dynamics (CFD) study of large scale screenhouses. Acta Hortic. 797:117-122. doi:10.17660/ActaHortic.2008.797.14

Flores-Velázquez, J., I.L. López-Cruz, E. Mejía-Sáenz, y J.I. Montero-Camacho. 2014. Evaluación del desempeño climático de un invernadero Baticenital del centro de México mediante Dinámica de Fluidos Computacional (CFD). Agrociencia 48(2):131-146.

Gromke, C., R. Buccolieri, S. Di-Sabatino, and B. Ruck. 2008. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations–evaluation of CFD data with experimental data. Atmos. Environ. 42:8640-8650. doi:10.1016/j.atmosenv.2008.08.019

He, K.S., D.Y. Chen, L.J. Sun, Z.L. Liu, and Z.Y. Huang. 2015. The effect of vent openings on the microclimate inside multi-span greenhouses during summer and winter seasons. Eng. Appl. Comput. Fluid Mechanics 9:399-410. doi:10.1080/19942060.2015.1061553

He, X., J. Wang, S. Guo, J. Zhang, B. Wei, J. Sun, and S. Shu. 2017. Ventilation optimization of solar greenhouse with removable back walls based on CFD. Comput. Electron. Agric. 49:16-25. doi:10.1016/j.compag.2017.10.001

Katsoulas, N., T. Bartzanas, T. Boulard, M. Mermier, and C. Kittas. 2006. Effect of Vent Openings and Insect Screens on Greenhouse Ventilation. Biosyst. Eng. 93:427-436. doi:10.1016/j.biosystemseng.2005.01.001

Kim, R.W., S.W. Hong, I.B. Lee, and K.S. Kwon. 2017. Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 2: Application of the CFD model. Biosyst. Eng. 164:257-280. doi:10.1016/j.biosystemseng.2017.09.011

Limtrakarn, W., P. Boonmongkol, A. Chompupoung, K. Rungprateepthaworn, J. Kruenate, and P. Dechaumphai. 2012. Computational fluid dynamics modeling to improve natural flow rate and sweet pepper productivity in greenhouse. Adv. Mechanical Eng. 2012:158563. doi:10.1155/2012/158563

López, A., F.D. Molina-Aiz, D.L. Valera, and A. Peña. 2016. Wind tunnel analysis of the airflow through insect-proof screens and comparison of their effect when installed in a mediterranean greenhouse. Sensors (Basel) 16(5):690. doi:10.3390/s16050690

López, A., D.L. Valera, and F. Molina-Aiz. 2011. Sonic anemometry to measure natural ventilation in greenhouses. Sensors (Basel) 11:9820-9838. doi:10.3390/s111009820

Majdoubi, H., T. Boulard, A. Hanafi, A. Bekkaoui, H. Fatnassi, H. Demrati, M. Nya, and L. Bouirden. 2007. Natural ventilation performance of a large greenhouse equipped with insect screens. Transac. ASABE 50:641-650. doi:10.13031/2013.22653

Mesmoudi, K., K.H. Meguallati, and P.E. Bournet. 2017. Effect of the greenhouse design on the thermal behavior and microclimate distribution in greenhouses installed under semi-arid climate. Heat Transf. - Asian Res. 46:1294-1311. doi:10.1002/htj.21274

Miguel, A.F. 1998. Airflow through porous screens: From theory to practical considerations. Energy Build. 28:63-69. doi:10.1016/S0378-7788(97)00065-0

Molina-Aiz, F.D., D.L. Valera, and A.J. Álvarez. 2004. Measurement and simulation of climate inside Almería-type greenhouses using computational fluid dynamics. Agric. For. Meteorol. doi:10.1016/j.agrformet.2004.03.009

Molina-Aiz, F.D., D.L. Valera, A.A. Peña, J.A. Gil, and A. López. 2009. A study of natural ventilation in an Almería-type greenhouse with insect screens by means of tri-sonic anemometry. Biosyst. Eng. 104:224-242. doi:10.1016/j.biosystemseng.2009.06.013

Muñoz, P., J.I. Montero, A. Antón, and F. Giuffrida. 1999. Effect of insect-proof screens and roof openings on greenhouse ventilation. J. Agric. Eng. Res. 73:171-178. doi:10.1006/jaer.1998.0404

Nebbali, R., J.C. Roy, and T. Boulard. 2012. Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse. Renew. Energy 43:111-129. doi:10.1016/j.renene.2011.12.003

Norton, T., D.W. Sun, J. Grant, R. Fallon, and V. Dodd. 2007. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresour. Technol. 98:2386-2414. doi.org/10.1016/j.biortech.2006.11.025

Pérez-Vega, C., J.A. Ramírez Arias, y I.L. López Cruz. 2016. Características aerodinámicas de mallas anti-insectos usadas en ventanas de invernaderos en México. Rev. Mex. Cienc. Agríc. 7:493-506.

Piscia, D., J.I. Montero, E. Baeza, and B.J. Bailey. 2012a. A CFD greenhouse night-time condensation model. Biosyst. Eng. 111:141-154. doi:10.1016/j.biosystemseng.2011.11.006

Piscia, D., J.I. Montero, M. Melé, J. Flores, J. Pérez-Parra, and E.J. Baeza. 2012b. A CFD model to study above roof shade and on roof shade of greenhouses. Acta Hortic. 952:133-140. doi:10.17660 / ActaHortic.2012.952.15

Romero-Gómez, P., C.Y. Choi, and I.L. López-Cruz. 2010. Enhancement of the greenhouse air ventilation rate under climate conditions of central Mexico. Agrociencia 44(1):1-15.

Ruiz-García, A., I.L. López-Cruz, R. Arteaga-Ramírez, y J.A. Ramírez-Arias. 2015. Tasas de ventilación natural de un invernadero del centro de México estimadas mediante balance de energía. Agrociencia 49(1):87-100.

Saberian, A., and S.M. Sajadiye. 2019. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renew. Energy. doi:10.1016/j.renene.2019.01.108

Santolini, E., B. Pulvirenti, D. Torreggiani, and P. Tassinari. 2019. Novel methodologies for the characterization of airflow properties of shading screens by means of wind-tunnel experiments and CFD numerical modeling. Comput. Electron. Agric. 163:104800. doi:10.1016/j.compag.2019.05.009

Teitel, M., O. Liran, J. Tanny, and M. Barak. 2008. Wind driven ventilation of a mono-span greenhouse with a rose crop and continuous screened side vents and its effect on flow patterns and microclimate. Biosyst. Eng. 101:111-122. doi:10.1016/j.biosystemseng.2008.05.012

Teitel, M., and E. Wenger. 2014. Air exchange and ventilation efficiencies of a monospan greenhouse with one inflow and one outflow through longitudinal side openings. Biosyst. Eng. 119: 98-107. doi:10.1016/j.biosystemseng.2013.11.001

Valera, D.L., A.J. Álvarez, and F.D. Molina. 2006. Aerodynamic analysis of several insect-proof screens used in greenhouses. Spanish J. Agric. Res. 4:273-279. doi:10.5424/sjar/2006044-204

Villagrán, E.A., E.J. Baeza Romero, and C.R. Bojacá. 2019. Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosyst. Eng. 188:288-304. doi:10.1016/j.biosystemseng.2019.10.026

Villagrán, E.A., and C.R. Bojacá. 2019a. Effects of surrounding objects on the thermal performance of passively ventilated greenhouses. J. Agric. Eng. 856:20-27. doi:10.4081/jae.2019.856

Villagrán, E.A., and C.R. Bojacá. 2019b. CFD simulation of the increase of the roof ventilation area in a traditional Colombian greenhouse: Effect on air flow patterns and thermal behavior. Int. J. Heat Technol. 37:881-892. doi:10.18280/ijht.370326

Villagrán, E.A., and C.R. Bojacá. 2019c. Study of natural ventilation in a Gothic multi-tunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornamental Hortic. 25:133-143. doi:10.14295/oh.v25i2.2013

Villagrán, E.A., R. Gil, J.F. Acuña, and C.R. Bojacá. 2012. Optimization of ventilation and its effect on the microclimate of a colombian multispan greenhouse. Agron. Colomb. 30:282-288.

Villagrán-Munar, E.A., y C.R. Bojacá-Aldana. 2019. Simulación del microclima en un invernadero usado para la producción de rosas bajo condiciones de clima intertropical. Chil. J. Agric. Anim. Sci. 35:137-150. doi:10.4067/s0719-38902019005000308

Wu, T., and C. Lei. 2016. CFD simulation of the thermal performance of an opaque water wall system for Australian climate. Solar Energy 133:141-154. doi:10.1016/J.SOLENER.2016.04.001

Publicado

2020-09-01

Cómo citar

Villagran, E. A., Jaramillo, J. E., & León-Pacheco, R. I. (2020). Ventilación natural en invernadero con mallas anti-insecto evaluadas con un modelo computacional de fluidos: Uso de pantallas anti-insectos en un invernadero colombiano. Agronomía Mesoamericana, 31(3), 709–728. https://doi.org/10.15517/am.v31i3.40782

Artículos más leídos del mismo autor/a