Efecto de los ácidos fenólicos en el sistema antioxidante de plantas de tomate (Solanum lycopersicum Mill.)

Autores/as

DOI:

https://doi.org/10.15517/am.v32i3.45101

Palabras clave:

antioxidantes enzimáticos, antioxidantes no enzimáticos, capacidad antioxidante

Resumen

Introducción. Los ácidos fenólicos pertenecen al grupo de los compuestos fenólicos, su síntesis y concentración en las plantas aumenta cuando estas se encuentran bajo condiciones de estrés biótico o abiótico. Objetivo. Evaluar el efecto de los ácidos fenólicos sobre el sistema de defensa antioxidante enzimático y no enzimático en plantas de tomate sometidas a estrés biótico. Materiales y métodos. El experimento se realizó de marzo a diciembre de 2016, en Saltillo, México. Se estableció un cultivo de tomate tipo Saladette de la variedad Río Fuego (Solanum lycopersicum Mill.). A plantas de tomate inoculadas con Clavibacter michiganensis subsp. michiganensis (1X105 UFC ml-1) se les realizaron aspersiones foliares de ácidos fenólicos a una dosis de 1 kg ha-1 con el producto Defens Gr® (IA: ácidos fenólicos 10 000 ppm). Se muestrearon hojas a los 15, 31 y 92 días después del trasplante (ddt) y frutos a los 90 ddt. Se trabajó con seis tratamientos: 1) testigo absoluto (T0), 2) aplicación de ácidos fenólicos antes de inocular Clavibacter (AFA), 3) aplicación de ácidos fenólicos después de inocular Clavibacter (AFD), 4) aplicación de ácidos fenólicos antes y después de inocular Clavibacter (AFAD), 5) solo aplicación de ácidos fenólicos (AF) y 6) solo inoculación con Clavibacter (Cmm). Resultados. La aplicación de ácidos fenólicos intervino en la actividad de antioxidantes enzimáticos y no enzimáticos. Se encontró mayor capacidad antioxidante en hoja que en fruto, la cual se determinó por ABTS [2,2’-azino-bis (3-etilbenzotiazolin-6-ácido sulfónico)] y DPPH (1,1-difenil-2-picrilhidrazil). La inoculación de las plantas de tomate aumentó la actividad de las enzimas catalasa y fenilalanina amonio liasa en hoja; además, hubo reducción de la actividad enzimática del superóxido dismutasa y el contenido de fenoles totales. Conclusión. Los ácidos fenólicos intervinieron en los mecanismos de defensa enzimáticos de la planta y redujeron los niveles de estrés ocasionados por la inoculación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Apolonio-Rodríguez, I., Franco-Mora, O., Salgado-Siclán, M. L., & Aquino-Martínez, J. G. (2017). Inhibición in vitro de Botrytis cinerea con extractos de hojas de vid silvestre (Vitis spp.). Revista Mexicana de Fitopatología, 35(2), 170–185. http://doi.org/10.18781/R.MEX.FIT.1611-1

Appel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Arvouet-Grand, A., Vennat, B., Pourrat, A., & Lergret, P. (1994). Standardisation dun extrait de propolis et identification des principaux constituants. Journal de Pharmacie de Belgique, 49(6), 462–468.

Asada, K. (1999). The water cycle in chloroplast: scavenging of active oxygen and dissipation of excess photons. Annual Reviews Plant Physiology and Plant Molecular Biology, 50, 601–639. https://doi.org/10.1146/annurev.arplant.50.1.601

Asada, K. (2000). The water-water cycle as alternative photon and electron sinks. Philosophical Transactions Royal Society London B Biological Science, 355(1402), 1419–1431. https://doi.org/10.1098/rstb.2000.0703

Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–396. https://doi.org/10.1104/pp.106.082040

Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042

Baraldi, R., Bertazza, G., Fontana, A. R., Murcia, G., Pontin, M. A., & Piccoli, P. N. (2017). ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry, 135, 34–52. https://doi.org/10.1016/j.phytochem.2016.12.007

Bellaloui, N. (2012). Soybean seed phenol, lignin, and isoflavones partitioning as affected by seed node position and genotype differences. Food and Nutrition Sciences, 3(4), 447–454. https://doi.org/10.4236/fns.2012.34064

Blanke, M. M., & Lenz, E. (1989). Fruit photosynthesis. Plant Cell Environment, 12(1), 31–46. https://doi.org/10.1111/j.1365-3040.1989.tb01914.x

Borboa, F. J., Rueda, P. E. O., Acedo, F. E., Ponce, J. F., Cruz, M., Grimaldo, J. O., & García, O. A. M. (2009). Detección de Clavibacter michiganensis subespecie michiganensis en el tomate del estado de Sonora, México. Revista Fitotecnia Mexicana, 32(4), 319–326. http://doi.org/10.35196/rfm.2009.4.319-326

Cansev, A., Gulen, H., & Eris, A. (2011). The activities of catalase and ascorbate peroxidase in olive (Olea europaea L. Cv. Gemlik) under low temperature stress. Horticulture, Environment and Biotechnology, 52(2), 113–120. https://doi.org/10.1007/s13580-011-0126-4

CAYMAN CHEMICAL. (2017). Superoxide dismutase assay kit item № 706002. https://www.caymanchem.com/pdfs/706002.pdf

Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., Sanchez-Rodriguez, E., Rubio-Wilhelmi, M. M., Romero, L., & Ruiz, J. M. (2012). Parameters symptomatic for boron toxicity in leaves of tomato plants. Journal of Botany, 2012, Article 726206. https://doi.org/10.1155/2012/726206

Daferera, D. J., Ziogas, B. N., & Polissiou, M. G. (2003). The effectiveness of plant essential oils in the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection, 22(1), 39–44. https://doi.org/10.1016/S0261(02)00095-9

Diao, Y., Xu. H., Li, G., Yu, A., Yu, X., W. Hu., Zheng, X., Li, S., Wang, Y., & Hu, Z. (2014). Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice. Molecular Biology Reports, 41, 4919–4927. https://doi.org/10.1007/s11033-014-3358-4

Di-Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2008). InfoStat versión 2008. Universidad Nacional de Córdoba. https://www.infostat.com.ar/

Dubreuil-Maurizi, C., & Poinssot, B. (2012). Role of glutathione in plant signaling under biotic stress. Plant Signaling & Behavior, 7(2), 210–212. https://doi.org/10.4161/psb.18831

Edet, E. E., Ofem, J. E., Igile, G. O., Ofem, O. E., Zainab, D. B., & Akwaowo, G. (2015). Antioxidant capacity of different African seeds and vegetables and correlation with the contents of ascorbic acid, phenolics and flavonoids. Journal of Medicinal Plants Research, 9(13), 454–461. https://doi.org/10.5897/JMPR2014.5660

Feng, X., Lai, Z., Lin, Y., Lai, G., & Lian, C. (2015). Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv. Tianbaojiao (AAA group). BMC Genomics, 16(823), 2–16. https://doi.org/10.1186/s12864-015-2046-7

Flohé, L., & Günzler, W. A. (1984). Assays of glutathione peroxidase. Methods in Enzymology, 105, 114–120. https://doi.org/10.1016/s0076-6879(84)05015-1

Flores-Torres, L. M., Flores-Olivas, A., Ochoa-Fuentes, Y. M., López -Arroyo, J. I., Olalde-Portugal, V., Benavides-Mendoza, A., González-Morales, S., & Zamora-Villa, V. M. (2017). Comparison of enzymes and phenolic compounds in three citrus species infected with Candidatus Liberibacter asiaticus. Revista Mexicana de Fitopatología, 35(2), 314–325. https://doi.org/10.18781/R.MEX.FIT.1608-2

Foyer, C. H., & Noctor, G. (2005). Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell and Environment, 29, 1056–107. https://doi.org/10.1111/j.1365-3040.2005.01327.x

Gartemann, K. H., Kirchner O., Engemann, J., Gräfen, I., Eichenlaub, R., & Burger, A. (2003). Clavibacter michiganensis subsp. michiganensis: First steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. Journal of Biotechnology, 106(2–3), 179–191. https://doi.org/10.1016/j.jbiotec.2003.07.011

Gaviria, M. C., Hernández, A. J., Lobo, A. M., Medina, C. C., & Rojano, B. (2012). Cambios en la actividad antioxidante en frutos de mortiño (Vaccinium meridionale Sw.) durante su desarrollo y maduración. Revista Facultad Nacional de Agronomía Medellín, 65(1), 6487–6495. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-28472012000100019.

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is fundamental theme of aerobic life. Plant Physiology, 141, 312–322. https://doi.org/10.1104/pp.106.077073

Herbette, S., Labrouhe, D. T., Drevet, J. R., & Roeckel-Drevet, P. (2011). Transgenic tomatoes showing higher glutathione peroxydase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Science, 180(3), 548–553. https://doi.org/10.1016/j.plantsci.2010.12.002

Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286

Lu, L., Wang, J., Zhu, R., Lu, H., Zheng, X., & Yu, T. (2015). Transcript profiling analysis of Rhodosporidium paludigenum mediated signaling pathways and defense responses in mandarin orange. Food Chemistry, 172, 603–612. https://doi.org/10.1016/j.foodchem.2014.09.097

Maddox, C. E., Laur, L. M., & Tian, L. (2010). Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Current Microbiology, 60(1), 53–58. https://doi.org/10.1007/s00284-009-9501-0

Maham, S., Muhammad, K., & Muhammad, S. (2018). Differential responses of plants to biotic stress and the role of metabolites. In P. Ahmad, M. Abass, V. Pratap, D. Kumar, P Alam, & M. Nasser (Eds.), Plant metabolites and regulation under environmental stress (pp. 69–87). Academic Press. https://doi.org/10.1016/B978-0-12-812689-9.00004-2

Marquéz-García, B., Fernández, M. Á., & Córdoba, F. (2009). Phenolics composition in Erica sp. differentially exposed to metal pollution in the Iberian Southwestern Pyritic Belt. Bioresource Technology, 100(1), 446–451. https://doi.org/10.1016/j.biortech.2008.04.070

Mendoza, L., K. Yánez, K., Vivanco, M., Melo, R., & Cotoras, M. (2013). Characterization of extracts from winery by-products with antifungal activity against Botrytis cinerea. Industrial Crops and Products, 43, 360–364. https://doi.org/10.1016/j.indcrop.2012.07.048

Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4), 523–530.

Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science, 84, 407–412. https://doi.org/10.1042/cs0840407

Mittler, R., Vanderauwera, S., Gollery, M., & Breusegem, F. V. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490–498. https://doi.org/10.1016/j.tplants.2004.08.009

Nakano, Y., & Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation inascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and Cell Physiology, 28(1), 131–140. https://doi.org/10.1093/oxfordjournals.pcp.a077268.

Navrot, N., Roubier, N., Gelbaye, E., & Jacquot. J. P. (2007). Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiologia Plantarum, 129, 185–195. https://doi.org/10.1111/j.1399-3054.2006.00777.x

Ozyigit, I. I., Filiz, E., Vatansever, R., Kurtoglu, K. Y., Koc, I., Öztürk, M. X., & Anjum, N. A. (2016). Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Frontiers in Plant Science, 7, Article 301. https://doi.org/10.3389/fpls.2016.00301

Pérez, E., de-la-Noval, B. M., Martínez, B., Torres, W., Medina, A., Hernández, A., & León, O. (2015). Inducción de mecanismos de defensa en plantas de tomate (Solanum lycopersicon L.) micorrizadas frente al ataque de Oidiopsis taurica (Lev.) Salm. Cultivos Tropicales, 36(1), 98–106. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362015000100013

Pignocchi, C., Fletcher, J. M., Wilkinson, J. E., Barnes, J. D., & Foyer, C. H. (2003). The function of ascorbate oxidase in tobacco. Plant Physiology, 132(3), 1631–1641. https://doi.org/10.1104/pp.103.022798

Ramos, S. J., Faquin, V., Guilherme, L. R. G., Castro, E. M., Ávila, F. W., Carvalho, G. S., Bastos, C. E. A., & Oliveira, C. (2010). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil and Environment, 56(12), 584–588. https://doi.org/10.17221/113/2010-PSE

Rueda-Barrientos, M. C., Martínez-Fernández, E., Villegas-Torres, O. G., Sainz-Aispuro, M. J., Peña-Chora, G., Hernández-Velazquez, V. M., & Hernández-Romano, J. (2017). Sensibilidad de la prueba de InmunoStrips® en la detección de Clavibacter michiganensis subsp. michiganensis en tomate. Acta Agrícola y Pecuaria, 3(2), 50–57. https://doi.org/10.30973/aap/2017.3.2/4

Servicio de Información Agroalimentaria y Pesquera. (2017). Atlas Agroalimentario 2017. http://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2017/Atlas-Agroalimentario-2017

Shi, J. X., Cui, M. H., Yang, L., Kim, Y. J., & Zhang, D. B. (2015). Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science, 20(11), 741–753. https://doi.org/10.1016/j.tplants.2015.07.010

Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analisys of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteau reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

Steiner, A. (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, 15(2), 134–154. https://doi.org/10.1007/BF01347224

Sykłowska-Baranek, K., Pietrosiuk, A., & Naliwajski, M. R. (2012). Effect of l-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures of Arnebia euchroma (Royle) Johnst. In Vitro Cellular & Developmental Biology – Plant, 48(5), 555–564. https://doi.org/10.1007/s11627-012-9443-2

Treutter, D. (2008). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology, 7(6), 581–591. https://doi.org/10.1055/s-2005-873009

Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombauts, S., Langebartels, C., Seidilitz, H. K., Zabeau, M., Van-Montagu, M., Inze, D., & Van-Breusegem, F. (2004). Catalase deficiency drastically affects gene expression induced by high light in Arabiodpsis thaliana. The Plant Journal, 39(1), 45–58. https://doi.org/10.1111/j.1365-313X.2004.02105.x

van-Loon, L. C., Rep, M., & C. M. J. (2006). Significance of inducible defense related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425

Xu, G., Ye, X., Liu, D., Ma, Y., & Chen, J. (2008). Composition and distribution of phenolic acids in Ponkan (Citrus poonensis Hort. ex Tanaka) and Huyou (Citrus paradisi Macf. Changshanhuyou) during maturity. Journal of Food Composition and Analysis, 21(5), 382–389. https://doi.org/10.1016/j.jfca.2008.03.003

Xue, T., Hartikainen, H., & Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil, 237(1), 55–61. https://doi.org/10.1023/A:1013369804867.

Wang, B., Lüttge, U., & Ratajczak, R. (2004). Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3, halophyte Suaeda salsa L. Journal of Plant Physiology, 161(3), 285–293. https://doi.org/10.1078/0176-1617-01123

Wang, X., Fang, G., & Yang, J. (2017). A thioredoxin-dependent glutathione peroxidase (OsGPX5) is required for rice normal development and salt stress Tolerance. Plant Molecular Biology Reporter, 35, 333–342. https://doi.org/10.1007/s11105-017-1026-2

Zárate-Martínez, W., González-Morales, S., Ramírez-Godina, F., Robledo-Olivo, A., & Juárez-Maldonado, A. (2018). Efecto de los ácidos fenólicos en plantas de tomate (Lycopersicon esculentum Mill.) inoculadas con Clavibacter michiganensis. Revista Mexicana de Ciencias Agrícolas, Esp.(20), 4367–4379. https://doi.org/10.29312/remexca.v0i20.1005

Publicado

2021-09-01

Cómo citar

Zárate-Martínez, W., González-Morales, S., Ramírez-Godina, F., Robledo-Olivo, A., & Juárez-Maldonado, A. (2021). Efecto de los ácidos fenólicos en el sistema antioxidante de plantas de tomate (Solanum lycopersicum Mill.). Agronomía Mesoamericana, 32(3), 854–868. https://doi.org/10.15517/am.v32i3.45101