Congelación isocórica: ventajas y oportunidades de investigación en la industria de alimentos

Autores/as

DOI:

https://doi.org/10.15517/am.2023.52879

Palabras clave:

congelación, Preservación de alimentos, punto de congelación, calidad

Resumen

Introducción. La congelación isocórica (a volumen constante) es una tecnología novel que ha sido evaluada en diferentes investigaciones para demostrar los posibles beneficios para la industria alimentaria. Objetivo. Presentar un resumen general sobre el mercado de alimentos congelados, las tecnologías de congelación utilizadas, así como las emergentes, y estudiar a profundidad los fundamentos teóricos de la congelación isocórica y las ventajas en la industria alimentaria con respecto a los sistemas tradicionales de congelación y evidenciar los posibles campos de investigación relacionados con dicha tecnología. Desarrollo. Este trabajo fue realizado en Costa Rica entre febrero de 2022 y junio del 2022, y se describe el contexto general del mercado de alimentos congelados, las tecnologías utilizadas en la industria, el principio termodinámico de la tecnología isocórica, las ventajas fisicoquímicas, microbiológicas y energéticas, y finaliza con los posibles campos de investigación y desventajas hasta ahora encontradas. Conclusión. La congelación isocórica presenta ventajas importantes respecto a los procesos de congelación actuales en la industria de alimentos, sin embargo, es necesario realizar más estudios respecto a aspectos microbiológicos, así como optimizar los parámetros de proceso y equipos para generar un cambio en el sistema de congelación a nivel mundial.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aubourg, S. P., & Gallardo, J. M. (2005). Effect of brine freezing on the rancidity development during the freezing storage of small Pelagic fish species. European Food Research and Technology, 220(2), 107–112. https://doi.org/10.1007/s00217-004-1024-0

Bilbao-Sainz, C., Sinrod, A. J. G., Williams, T., Wood, D., Chiou, B. S., Bridges, D. F., Wu, V. C. H., Lyu, C., Rubinsky, B., & McHugh, T. (2020). Preservation of Tilapia (Oreochromis aureus) Fillet by Isochoric (Constant Volume) Freezing. Journal of Aquatic Food Product Technology, 29(7), 629–640. https://doi.org/10.1080/10498850.2020.1785602

Bilbao-Sainz, C., Sinrod, A., Powell-Palm, M. J., Dao, L., Takeoka, G., Williams, T., Wood, D., Ukpai, G., Aruda, J., Bridges, D. F., Wu, V.C.H., Rubinsky, B., & McHugh, T. (2019). Preservation of sweet cherry by isochoric (constant volume) freezing. Innovative Food Science and Emerging Technologies, 52, 108–115. https://doi.org/10.1016/j.ifset.2018.10.016

Bilbao-Sainz, C., Sinrod, A. J. G., Dao, L., Takeoka, G., Williams, T., Wood, D., Bridges, D. F., Powell-Palm, M. J., Ukpai, G., Chiou, B. S., Wu, V. C. H., Rubinsky, B., & McHugh, T. (2020). Preservation of spinach by isochoric (constant volume) freezing. International Journal of Food Science and Technology, 55(5), 2141–2151. https://doi.org/10.1111/ijfs.14463

Bilbao-Sainz, C., Sinrod, A. J. G., Dao, L., Takeoka, G., Williams, T., Wood, D., Chiou, B.S., Bridges, D. F., Wu, V. C. H., Lyu, C., Powell-Palm, M. J., Rubisnky, B., & McHugh, T. (2021). Preservation of grape tomato by isochoric freezing. Food Research International, 143, Article 110228. https://doi.org/10.1016/j.foodres.2021.110228

Bilbao-Sainz, C., Zhao, Y., Takeoka, G., Williams, T., Wood, D., Chiou, B. S., Powell-Palm, M. J., Wu, V. C. H., Rubinsky, B., & McHugh, T. (2020). Effect of isochoric freezing on quality aspects of minimally processed potatoes. Journal of Food Science, 85(9), 2656–2664. https://doi.org/10.1111/1750-3841.15377

Bridges, D. F., Bilbao-Sainz, C., Powell-Palm, M. J., Williams, T., Wood, D., Sinrod, A. J. G, Ukpai, G., McHugh, T. H., Rubinsky, B., & Wu, V. C. H. (2020). Viability of Listeria monocytogenes and Salmonella typhimurium after isochoric freezing. Journal of Food Safety, 40(5), Article e12840. https://doi.org/10.1111/jfs.12840

Bridgman, P. W. (1912). Water in the liquid and five solid forms, under pressure. Proceedings of the American Academy of Arts and Sciences, 47(13), 441–558. https://doi.org/10.2307/20022754

Cao, X., Zhang, F., Zhao, D., & Li, J. (2018). Effects of freezing conditions on quality changes in blueberries. Journal of the Science of Food and Agriculture, 98(12), 4673–4679. https://doi.org/10.1002/jsfa.9000

Central America Data. (2022, marzo 21). Fruta Congelada: Ventas regionales al alza. https://www.centralamericadata.com/es/article/home/Fruta_congelada_Ventas_regionales_al_alza

Choi, M. J., Min, S. G., & Hong, G. P. (2016). Effects of pressure-shift freezing conditions on the quality characteristics and histological changes of pork. LWT- Food Science and Technology, 67, 194–199. https://doi.org/10.1016/j.lwt.2015.11.054

Cocetta, G., Baldassarre, V., Spinardi, A., & Ferrante, A. (2014). Effect of cutting on ascorbic acid oxidation and recycling in fresh-cut baby spinach (Spinacia oleracea L.) leaves. Postharvest Biology and Technology, 88, 8–16. https://doi.org/10.1016/j.postharvbio.2013.09.001

Dupont, J. L., Domanski, P., Lebrun, P., & Ziegler, F. (2019). The role of refrigeration in the global economy, 38th note on refrigeration technologies. International Institute of Refrigeration. http://doi.org/10.18462/iif.NItec38.06.2019

Formica de Oliveira, A. C. (2017). Effect of abiotic stresses on bioactive contents of vegetables and high-pressure technology in related functional beverages [Doctoral dissertation, Universidad Politécnica de Cartagena]. Universidad Politécnica de Cartagena Repository. http://doi.org/10.31428/10317/6376

Fortune Business Insights. (2022, June 2). Frozen food market size, share & COVID-19 Impact Analysis, By type (frozen ready meals, frozen seafood and meat products, frozen snacks & bakery products, and others), Distributions channel and regional forecast, 2021-2028. https://www.fortunebusinessinsights.com/frozen-food-market-104138

Gürbüz, Çolak, N., Tek, Eken, N., Ülger, M., Frary, A., & Doğanlar, S. (2020). Mapping of quantitative trait for antioxidant molecules in tomato fruit: Carotenoids, vitamins C and E, glutathione, and phenolic acids. Plant Science, 292, Article 110393. https://doi.org/10.1016/j.plantsci.2019.110393

Horbaniuc, B., Ioan, C. C., & Dumitrascu, G. (2012). Study of individual quick freezing using liquid nitrogen: An ecological food freezing technique. Lucrări Științifice 55(2), 79–83. http://www.uaiasi.ro/revagrois/PDF/2012-2/paper/2012-55(2)-13-en.pdf

James, C., Purnell, G., & James, S. J. (2015). A review of novel and innovative food freezing technologies. Food Bioprocess Technology, 8, 1616–1634. https://doi.org/10.1007/s11947-015-1542-8

Katırcı, N., Işık, N., Güpür, Ç., Ozge Guler, H., Gursoy, O., & Yilmaz, Y. (2020). Differences in antioxidant activity, total phenolic and flavonoid contents of commercial and homemade tomato pastes. Journal of the Saudi Society of Agricultural Sciences, 19(4), 249–254. https://doi.org/10.1016/j.jssas.2018.11.003

Lin, Y. P., & Charng, Y. Y. (2021). Chlorophyll dephytylation in chlorophyll metabolism: A simple reaction catalyzed by various enzymes. Plant Science, 302, Article 110682. https://doi.org/10.1016/j.plantsci.2020.110682

Lyu, C., Nastase, G., Ukpai, G., Serban, A., & Rubinsky, B. (2017). A comparison of freezing-damage during isochoric and isobaric freezing of the potato. PeerJ, 5, Article e3322. https://doi.org/10.7717/peerj.3322

López Toro, C. M. (2020). Salmuera en alimentos. Universidad Nacional Autónoma de Honduras. http://doi.org/10.13140/RG.2.2.12158.00324

Mathias-Rettig, K., & Ah-Hen, K. (2014). El color en los alimentos un criterio de calidad medible. Agro sur, 42(2), 57–66. https://doi.org/10.4206/agrosur.2014.v42n2-07

Mikus, H., Miller, A., Nastase, G., Serban, A., Shapira, M., & Rubinsky, B. (2016). The nematode Caenorhabditis elegans survives subfreezing temperatures in an isochoric system. Biochemical and Biophysical Research Communications, 477(3), 401–405. https://doi.org/10.1016/j.bbrc.2016.06.089

Năstase, G., Lyu, C., Ukpai, G., Serban, A., & Rubinsky, B. (2017). Isochoric and isobaric freezing off fish muscle. Biochemical and Biophysical Research Communications, 485(2), 279–283. https://doi.org/10.1016/j.bbrc.2017.02.091

Nida, S., Moses, J. A., & Anandharamakrishnan, C. (2021). Isochoric freezing and its emerging applications in food preservation. Food Engineering Reviews, 13, 812–821. https://doi.org/10.1007/s12393-021-09284-x

Ojha, S., Chavan, S., & Rajguru, S. (2021). A review on technological innovation in the food industry. Food and Agriculture Spectrum Journal, 2(3), 71–75.

Pathare, P. B., Linus, Opara, U., & Al-Julanda, Al-Said, F. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6, 36–60. https://doi.org/10.1007/s11947-012-0867-9

Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high-pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, 10(3), 308–313. https://doi.org/10.1016/j.ifset.2008.12.004

Plotean, S. (2017). Design and technical features increasing food safety of fan IQF freezer. Journal of Hygienic Engineering and Design, 19, 3–7. https://n9.cl/s5y7x

Podolska, M., Pawlikowski, B., Naldona-Altyn, K., Pawlak, J., Komar-Szymczak, K., & Szostakowska, B. (2019). How effective is freezing at killing Anisakis simplex, Pseudoterranova krabbei, and P. decipiens larvae? An Experimental evaluation of time-temperature conditions. Parasitology Research, 118, 2139–2147. https://doi.org/10.1007%2Fs00436-019-06339-1

Powell-Palm, M. J., Preciado, J., Lyu, C., & Rubinsky, B. (2018). Escherichia coli viability in a isochoric system at subfreezing temperatures. Cryobiology, 85, 17–24. https://doi.org/10.1016/j.cryobiol.2018.10.262

Powell-Palm, M. J., & Rubinsky, B. (2019). A shift from the isobaric to the isochoric thermodynamic state can reduce energy consumption and augment temperature stability in frozen food storage. Journal of Food Engineering, 251, 1–10. https://doi.org/10.1016/j.jfoodeng.2019.02.001

Preciado, J. (2007). The Fundamentals of Isochoric Freezing and its Role in the Cryopreservation of Biological Materials (Publication No. 3306298) [Doctoral dissertation, University of California, Berkeley]. ProQuest Dissertations and Theses Global. https://www.proquest.com/docview/304902637?pq-origsite=gscholar&fromopenview=true

Preciado, J. A., & Rubinsky, B. (2010). Isochoric preservation: A novel characterization method. Criobiology, 60(1), 23–29. https://doi.org/10.1016/j.cryobiol.2009.06.010

Promotora de Comercio Exterior de Costa Rica. (24 de abril del 2022). Crisis del coronavirus genera un aumento del consumo de frutas frescas. https://www.procomer.com/alertas_comerciales/exportador-alerta/crisis-del-coronavirus-genera-un-aumento-del-consumo-de-frutas-frescas/

Rahman, M. S., & Velez-Ruiz, J. F. (2007). Food Preservation by Freezing. En M. S. Rahman (Ed.), Handbook of Food Preservation (2da ed., pp. 636–667). CRC press. https://doi.org/10.1201/9781420017373

Reyes Ramos, M., & Meza Jiménez, M. (2021). Cambios de estilos de vida durante el confinamiento por COVID-19. Ciencia ergo-sum Revista Multidisciplinaria de Prospectiva, 28(4), Artículo e143. https://doi.org/10.30878/ces.v28n4a4

Rubinsky, B., Pérez, P. A., & Carlson, M. E. (2005). The thermodynamic principles of isochoric freezing cryopreservation. Cryobiology, 50(2), 121–138. https://doi.org/10.1016/j.cryobiol.2004.12.002

Rubinsky, B. (2021). Mass transfer into biological matter using isochoric freezing. Cryobiology, 100, 212–215. https://doi.org/10.1016/j.cryobiol.2021.03.004

Sanz, P. D., & Otero, L. (2014). High-pressure freezing. In D. W. Sun (Ed.), Emerging technologies for food processing (pp. 515–538). Academic Press. https://doi.org/10.1016/B978-0-12-411479-1.00028-0

Salinas-Almaguer, S., Angulo-Sherman, A., Sierra-Valdez, F. J., & Mercado-Uribe, H. (2015). Sterilization by cooling in isochoric conditions: the case of Escherichia coli. Plos one, 10(10), Article e0140882. https://doi.org/10.1371/journal.pone.0140882

Šamec, D., & Piljac-Žegarac, J. (2015). Fluctuations in the levels of antioxidant compounds and antioxidant capacity of ten small fruits during one year of frozen storage. International Journal of Food Properties, 18, 21–32. https://doi.org/10.1080/10942912.2013.790423

Scurlock, R. G. (2015). The future with cryogenic fluid dynamics. Physics Procedia, 67, 20–26. https://doi.org/10.1016/j.phpro.2015.06.005

Schlüter, O. (2003). Impact of high pressure-low temperature processes on cellular materials related to foods [Doctoral dissertation, Technische University of Berlin]. Technische University of Berlin Depositonce. http://doi.org/10.14279/depositonce-763

Sequeira-Muñoz, A., Chevalier, D., Simpson, B. K., Le Bail, A., & Ramaswamy, H. S. (2005). Effect of pressure-shift freezing versus air-blast freezing of carp (Cyprinus Carpio) fillets: A storage study. Journal of Food Biochemistry, 29(5), 504–516. https://doi.org/10.1111/j.1745-4514.2005.00034.x

Szobota, S. A., & Rubinsky, B. (2006). Analysis of isochoric subcooling. Cryobiology, 53(1), 139–142. https://doi.org/10.1016/j.cryobiol.2006.04.001

United Nations Environment Programme. (2021). Food Waste Index Report 2021. Editorial UNEP. https://www.unep.org/es/resources/informe/indice-de-desperdicio-de-alimentos-2021

Van der Sman, R. G. M. (2020). Impact of processing factor son quality of frozen vegetables and fruits. Food Engineering Reviews, 12, 399–420. https://doi.org/10.1007/s12393-020-09216-1

Vega-Gálvez, A., López, J., Torres-Ossandón, M. J., Galotto, M. J., Puente-Díaz, L., Quispe-Fuentes, I., & Di Scala, K. (2014). High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT-Food Science and Technology, 58(2), 519–526. https://doi.org/10.1016/j.lwt.2014.04.010

Wan, L., Powell-Palm, M. J., Lee, C., Gupta, A., Weegman, B. P., Clemens, M. G., & Rubinsky, B. (2018). Preservation of rat hearts in subfreezing temperature isochoric conditions to – 8 °C and 78 MPa. Biochemical and Biophysical Research Communications, 496(3), 852–857. https://doi.org/10.1016/j.bbrc.2018.01.140

Xin, Y., Zhan, M., Xu, B., Adhikari, B. & Sun, J. (2015). Research trends in selected blanching pretreatments and quick freezing technologies as applied in fruits and vegetables: A review. International Journal of Refrigeration, 57, 11–25. https://doi.org/10.1016/j.ijrefrig.2015.04.015

Zhao, Y., Bilbao-Sainz, C., Wood, D., Chiou, B., Powell-Palm, M. J., Chen, L., McHugh, T., & Rubinsky, B. (2021). Effects of Isochoric freezing conditions on cut potato quality. Foods, 10(5), Article 974. https://doi.org/10.3390/foods10050974

Zhao, Y., Powell-Palm, M. J., Wang, J., Bilbao-Sainz, C., McHugh, T., & Rubinsky, B. (2021). Analysis of global energy savings in the frozen food industry made possible by transitioning from conventional isobaric freezing to isochoric freezing. Renewable and Sustainable Energy Reviews, 151, Article 111621. https://doi.org/10.1016/j.rser.2021.111621

Zhu, Z., Li, T., & Sun, D. (2020). Pressure-related cooling and freezing techniques for the food industry: fundamentals and applications. Critical Reviews in Food Science and Nutrition, 61(17), 2793–2808. https://doi.org/10.1080/10408398.2020.1841729

Publicado

2023-06-13

Cómo citar

Chaves-Quesada, J., & Acosta-Montoya, O. (2023). Congelación isocórica: ventajas y oportunidades de investigación en la industria de alimentos. Agronomía Mesoamericana, 34(3), 52879. https://doi.org/10.15517/am.2023.52879