Hardened beans (Phaseolus vulgaris L.) and technological alternatives for their utilization in the food industry
DOI:
https://doi.org/10.15517/am.2024.59614Keywords:
legumes, Fabaceae, technological processes, agri-food industry, hard-to-cook, storageAbstract
Introduction. Common beans (Phaseolus vulgaris L.) are one of the most widely consumed legumes worldwide due to their high nutritional value, particularly for their protein and mineral content. One critical aspect of bean quality is proper storage, which is essential to prevent issues such as hardening. This phenomenon leads to increased cooking time, reduced palatability, lower nutritional value, and decreased consumer acceptance. Therefore, it is not only necessary to understand the causes and mechanisms behind bean hardening but also to identify technological alternatives to utilize hardened beans effectively. Objective. To analyze the structural changes in beans that lead to hardening, and to evaluate treatments that enhance the use of hardened beans in the food industry. Development. This study was conducted from November 2023 to July 2024. It involved an exhaustive review and summary of the main accepted hypotheses explaining bean hardening, including the pectin-cation-phytate theory, lignification, and protein-starch interactions, as well as the causes and consequences of this phenomenon. Additionally, the study explored pre-treatment and processing techniques used in industrial bean production, highlighting promising approaches for processing hardened beans. These include cooking, microwaving, autoclaving, germination, and innovative methods such as high hydrostatic pressures. Conclusions. Bean hardening is a multifactorial issue posing challenges for producers and consumers alike. Implementing treatments to utilize hardened beans is essential. While various treatments show potential, further research is needed to develop effective solutions for the food industry.
Downloads
References
Acuña-Gutiérrez, C., Campos-Boza, S., Hernández-Pridybailo, A., & Jiménez, V. M. (2019). Nutritional and industrial relevance of particular neotropical pseudo-cereals. In C. Piatti, S. Graeff-Hönninger, & F. Khajehei (Eds.), Food Tech Transitions (pp. 65–79). Springer Cham. https://doi.org/10.1007/978-3-030-21059-5_4
Akinjayeju, O., & Ajayi, O. F. (2011). Effects of dehulling on functional and sensory properties of flours from black beans (Phaseolus vulgaris). Food and Nutrition Sciences, 2(4), 344–349. https://doi.org/10.4236/fns.2011.24049
Alfaro-Diaz, A., Escobedo, A., Luna-Vital, D. A., Castillo-Herrera, G., & Mojica, L. (2023). Common beans as a source of food ingredients: Techno-functional and biological potential. Comprehensive Reviews in Food Science and Food Safety, 22(4), 2910–2944. https://doi.org/10.1111/1541-4337.13166
Alpos, M., Leong, S. Y., Liesaputra, V., & Oey, I. (2022). Influence of pulsed electric fields (PEF) with calcium addition on the texture profile of cooked black beans (Phaseolus vulgaris) and their particle breakdown during in vivo oral processing. Innovative Food Science & Emerging Technologies, 75, Article 102892. https://doi.org/10.1016/j.ifset.2021.102892
Anton, A. A., Fulcher, G. R., & Arntfield, S. D. (2009). Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chemistry, 113(4), 989–996. https://doi.org/10.1016/j.foodchem.2008.08.050
Anton, A. A., Ross, K. A., Beta, T., Fulcher, G. R., & Arntfield, S. D. (2008). Effect of pre-dehulling treatments on some nutritional and physical properties of navy and pinto beans (Phaseolus vulgaris L.). LWT - Food Science and Technology, 41(5), 771–778. https://doi.org/10.1016/j.lwt.2007.05.014
Aravindakshan, S., Kyomugasho, C., Tafiire, H., Van Loey, A., Grauwet, T., & Hendrickx, M. E. (2022). The moisture plasticizing effect on enzyme-catalyzed reactions in model and real systems in view of legume ageing and their hard to cook development. Journal of Food Engineering, 314, Article 110781. https://doi.org/10.1016/j.jfoodeng.2021.110781
Araya Villalobos, R., Martínez Umaña, K., López Zúñiga, A., & Murillo Williams, A. (2013). Protocolo para el manejo poscosecha de la semilla de frijol. Organización de las Naciones Unidas para la Alimentación y la Agricultura.
Arias, C. (Ed.). (1993). Manual de manejo poscosecha del grano. Organización de las Naciones Unidas para la Agricultura y la Alimentación http://www.fao.org/docrep/X5027S/x5027S00.htm#Contents
Bassett, A., Dolan, K. D., & Cichy, K. (2020). Reduced retort processing time improves canning quality of fast-cooking dry beans (Phaseolus vulgaris L.). Journal of the Science of Food and Agriculture, 100(10), 3995–4004. https://doi.org/10.1002/jsfa.10444
Batista, K. A., Pereira, W. J., Moreira, B. R., Silva, C. N., & Fernandes, K. F. (2020). Effect of autoclaving on the nutritional quality of hard-to-cook common beans (Phaseolus vulgaris). International Journal of Environment, Agriculture and Biotechnology, 5(1), 22–30. https://doi.org/10.22161/ijeab.51.4
Batista, K. A., Prudêncio, S. H., & Fernandes, K. F. (2010). Changes in the functional properties and antinutritional factors of extruded Hard-to-Cook common beans (Phaseolus vulgaris, L.). Journal of Food Science, 75(3), C286–C290. https://doi.org/10.1111/j.1750-3841.2010.01557.x
Batista, K. A., Prudêncio, S. H., & Fernandes, K. F. (2011). Wheat bread enrichment with hard-to-cook bean extruded flours: Nutritional and acceptance evaluation. Journal of Food Science, 76(1), S108–S113. https://doi.org/10.1111/j.1750-3841.2010.01969.x
Belmiro, R. H., Tribst, A. A. L., & Cristianini, M. (2018). Impact of high pressure processing in hydration and drying curves of common beans (Phaseolus vulgaris L.). Innovative Food Science & Emerging Technologies, 47, 279–285. https://doi.org/10.1016/j.ifset.2018.03.013
Betancur-Ancona, D., Sosa-Espinoza, T., Ruiz-Ruiz, J., Segura-Campos, M., & Chel-Guerrero, L. (2014). Enzymatic hydrolysis of hard-to-cook bean (Phaseolus vulgaris L.) protein concentrates and its effects on biological and functional properties. International Journal of Food Science & Technology, 49(1), 2–8. https://doi.org/10.1111/ijfs.12267
Berrios, J. De J., Losso, J. N., & Albertos, I. (2022). Extrusion processing of dry beans and pulses. In M. Siddiq, & M. A. Uebersax (Eds.), Dry beans and pulses (1st ed., pp. 225–246). Wiley. https://doi.org/10.1002/9781119776802.ch9
Byarugaba, R., Nabubuya, A., & Muyonga, J. (2020). Descriptive sensory analysis and consumer preferences of bean sauces. Food Science & Nutrition, 8(8), 4252–4265. https://doi.org/10.1002/fsn3.1721
Chen, D., Pham, U. T. T., Van Loey, A., Grauwet, T., Hendrickx, M., & Kyomugasho, C. (2021). Microscopic evidence for pectin changes in hard-to-cook development of common beans during storage. Food Research International, 141, Article 110115. https://doi.org/10.1016/j.foodres.2021.110115
Chigwedere, C. M., Humerez Flores, J. N., Panozzo, A., Van Loey, A. M., & Hendrickx, M. E. (2019). Instability of common beans during storage causes hardening: The role of glass transition phenomena. Food Research International, 121, 506–513. https://doi.org/10.1016/j.foodres.2018.12.006
Chigwedere, C. M., Olaoye, T. F., Kyomugasho, C., Jamsazzadeh Kermani, Z., Pallares Pallares, A., Van Loey, A. M., Grauwet, T., & Hendrickx, M. E. (2018). Mechanistic insight into softening of Canadian wonder common beans (Phaseolus vulgaris) during cooking. Food Research International, 106, 522–531. https://doi.org/10.1016/j.foodres.2018.01.016
Chu, J., Ho, P., & Orfila, C. (2020). Growth region impacts cell wall properties and hard-to-cook phenotype of canned Navy beans (Phaseolus vulgaris). Food and Bioprocess Technology, 13, 818–826. https://doi.org/10.1007/s11947-020-02436-7
Cichy, K. A., Wiesinger, J. A., Berry, M., Nchimbi-Msolla, S., Fourie, D., Porch, T. G., Ambechew, D., & Miklas, P. N. (2019). The role of genotype and production environment in determining the cooking time of dry beans (Phaseolus vulgaris L.). Legume Science, 1(1), Article e13. https://doi.org/10.1002/leg3.13
Cominelli, E., Sparvoli, F., Lisciani, S., Forti, C., Camilli, E., Ferrari, M., Le Donne, C., Marconi, S., Vorster, B. J., Botha, A.-M., Marais, D., Losa, A., Sala, T., Reboul, E., Alvarado-Ramos, K., Waswa, B., Ekesa, B., Aragão, F., & Kunert, K. (2022). Antinutritional factors, nutritional improvement, and future food use of common beans: A perspective. Frontiers in Plant Science, 13, Article 992169. https://doi.org/10.3389/fpls.2022.992169
De Pasquale, I., Pontonio, E., Gobbetti, M., & Rizzello, C. G. (2020). Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. International Journal of Food Microbiology, 316, Article 108426. https://doi.org/10.1016/j.ijfoodmicro.2019.108426
Del Valle, J. M., Cottrell, T. J., Jackman, R. L., & Stanley, D. W. (1992). Hard-to-cook defect in black beans: The contribution of proteins to salt soaking effects. Food Research International, 25(6), 429–436. https://doi.org/10.1016/0963-9969(92)90167-4
Demito, A., Ziegler, V., Tiago, J., Goebel, S., Machado Coelho, S. R., & Cardoso Elias, M. (2018). Efeitos da umidade, da temperatura e do tempo de armazenamento de grãos de feijão carioca sobre a aparência visual e propriedades tecnológicas. Em I. Lorineu, M. Alvares de Oliveira, L. R. D’Antonio Faroni, & V. M. Scussel (Coord.), Anais da 6º Conferência Brasileira de Pós-Colheita (pp. 253–260). Asoociação Brasileira de Pós-Colheita.
Devkota, L., He, L., Bittencourt, C., Midgley, J., & Haritos, V. S. (2022). Thermal and pulsed electric field (PEF) assisted hydration of common beans. LWT, 158, Article 113163. https://doi.org/10.1016/j.lwt.2022.113163
Drulyte, D., & Orlien, V. (2019). The effect of processing on digestion of legume proteins. Foods, 8(6), Article 224. https://doi.org/10.3390/foods8060224
Ferreira, L., Mendes-Ferreira, A., Benevides, C., Melo, D., Costa, A., Mendes-Faia, A., & Oliveira, M. (2019). Effect of controlled microbial fermentation on nutritional and functional characteristics of cowpea bean flours. Foods, 8(11), 530. https://doi.org/10.3390/foods8110530
Food and Agriculture Organization. (n.d.). FAOSTAT. Crops and livestock products—Area harvested, yield and production quantity [Dataset]. Retrieved July 19, 2024 from http://www.fao.org/faostat/en/#data/QC
Garcia-Vela, L. A., Del Valle, J. M., & Stanley, D. W. (1991). Hard-to-cook defect in black beans: The effect of soaking in various aqueous salt solutions. Canadian Institute of Food Science and Technology Journal, 24(1–2), 60–67. https://doi.org/10.1016/S0315-5463(91)70021-7
Garrido-Galand, S., Asensio-Grau, A., Calvo-Lerma, J., Heredia, A., & Andrés, A. (2021). The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Research International, 145, Article 110398. https://doi.org/10.1016/j.foodres.2021.110398
Haileslassie, H. A., Henry, C. J., & Tyler, R. T. (2019). Impact of pre-treatment (soaking or germination) on nutrient and anti-nutrient contents, cooking time and acceptability of cooked red dry bean (Phaseolus vulgaris L.) and chickpea (Cicer arietinum L.) grown in Ethiopia. International Journal of Food Science & Technology, 54(8), 2540–2552. https://doi.org/10.1111/ijfs.14165
Havemeier, S., Erickson, J., & Slavin, J. (2017). Dietary guidance for pulses: The challenge and opportunity to be part of both the vegetable and protein food groups. Annals of the New York Academy of Sciences, 1392(1), 58–66. https://doi.org/10.1111/nyas.13308
Hincks, M. J., & Stanley, D. W. (1987). Lignification: Evidence for a role in hard-to-cook beans. Journal of Food Biochemistry, 11(1), 41–58. https://doi.org/10.1111/j.1745-4514.1987.tb00111.x
Kelly, J., & Cichy, K. (2013). Dry bean breeding and production technologies. In M. Siddiq & M. A. Uebersax (Eds.), Dry beans and pulses production, processing, and nutrition (pp. 23–54). Wiley. https://doi.org/10.1002/9781118448298.ch2
Kinyanjui, P. K., Njoroge, D. M., Makokha, A. O., Christiaens, S., Ndaka, D. S., & Hendrickx, M. (2015). Hydration properties and texture fingerprints of easy- and hard-to-cook bean varieties. Food Science & Nutrition, 3(1), 39–47. https://doi.org/10.1002/fsn3.188
Kinyanjui, P. K., Njoroge, D. M., Makokha, A. O., Christiaens, S., Sila, D. N., & Hendrickx, M. (2017). Quantifying the effects of postharvest storage and soaking pretreatments on the cooking quality of common beans (Phaseolus vulgaris). Journal of Food Processing and Preservation, 41(4), Article e13036. https://doi.org/10.1111/jfpp.13036
Kwofie, E. M., Mba, O. I., & Ngadi, M. (2020). Classification, force deformation characteristics and cooking kinetics of common beans. Processes, 8(10), Article 1227. https://doi.org/10.3390/pr8101227
Kyomugasho, C., Kamau, P. G., Aravindakshan, S., & Hendrickx, M. E. (2021). Evaluation of storage stability of low moisture whole common beans and their fractions through the use of state diagrams. Food Research International, 140, Article 109794. https://doi.org/10.1016/j.foodres.2020.109794
Lestari, L. A., Huriyati, E., & Marsono, Y. (2017). The development of low glycemic index cookie bars from foxtail millet (Setaria italica), arrowroot (Maranta arundinacea) flour, and kidney beans (Phaseolus vulgaris). Journal of Food Science and Technology, 54, 1406–1413. https://doi.org/10.1007/s13197-017-2552-5
Li, P., Li, Y., Wang, L., Zhang, H., Qi, X., & Qian, H. (2020). Study on water absorption kinetics of black beans during soaking. Journal of Food Engineering, 283, Article 110030. https://doi.org/10.1016/j.jfoodeng.2020.110030
Liu, K., & Bourne, M. C. (1995). Cellular, biological, and physicochemical basis for the hard-to-cook defect in legume seeds. Critical Reviews in Food Science and Nutrition, 35(4), 263–298. https://doi.org/10.1080/10408399509527702
Los, F. G. B., Zielinski, A. A. F., Wojeicchowski, J. P., Nogueira, A., & Demiate, I. M. (2018). Beans (Phaseolus vulgaris L.): Whole seeds with complex chemical composition. Current Opinion in Food Science, 19, 63–71. https://doi.org/10.1016/j.cofs.2018.01.010
Machado, C. M., Ferruzzi, M. G., & Nielsen, S. S. (2008). Impact of the Hard-to-Cook phenomenon on phenolic antioxidants in dry beans (Phaseolus vulgaris). Journal of Agricultural and Food Chemistry, 56(9), 3102–3110. https://doi.org/10.1021/jf072861y
Marconi, E., Ruggeri, S., Cappelloni, M., Leonardi, D., & Carnovale, E. (2000). Physicochemical, nutritional, and microstructural characteristics of chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.) following microwave cooking. Journal of Agricultural and Food Chemistry, 48(12), 5986–5994. https://doi.org/10.1021/jf0008083
Martín-Cabrejas, M. A., Jaime, L., Karanja, C., Downie, A. J., Parker, M. L., Lopez-Andreu, F. J., Maina, G., Esteban, R. M., Smith, A. C., & Waldron, K. W. (1999). Modifications to physicochemical and nutritional properties of hard-to-cook beans (Phaseolus vulgaris L.) by extrusion cooking. Journal of Agricultural and Food Chemistry, 47(3), 1174–1182. https://doi.org/10.1021/jf980850m
Martín-Cabrejas, M. A., Sanfiz, B., Vidal, A., Mollá, E., Esteban, R., & López-Andréu, F. J. (2004). Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 52(2), 261–266. https://doi.org/10.1021/jf034980t
Mattson, S. (1946). The cookability of yellow peas: A col- loid-chemical and biological study. Acta Agriculturae Scandinavica, 2, 185–231.
Mbithi-Mwikya, S., Ooghe, W., Van Camp, J., Ngundi, D., & Huyghebaert, A. (2000). Amino acid profiles after sprouting, autoclaving, and lactic acid fermentation of finger millet (Eleusine coracan) and kidney beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 48(8), 3081–3085. https://doi.org/10.1021/jf0002140
Mbofung, C. M. F., Rigby, N., & Waldron, K. (1999). Use of two varieties of hard-to-cook beans (Phaseolus vulgaris) and cowpeas (Vigna unguiculata) in the processing of koki (a steamed legume product). Plant Foods for Human Nutrition, 54, 131–150. https://doi.org/10.1023/A:1008169000428
Messou, T., Mani Adrien, K., Kouassi Cyrile, G., & Kablan, T. (2023). Effect of cooking time on the nutritional and anti-nutritional properties of red and black beans of Phaseolus lunatus (L.) consumed in south and east of Côte d’Ivoire. GSC Biological and Pharmaceutical Sciences, 22(1), 269–281. https://doi.org/10.30574/gscbps.2023.22.1.0459
Miano, A. C., Pereira, J. D. C., Castanha, N., Júnior, M. D. D. M., & Augusto, P. E. D. (2016). Enhancing mung bean hydration using the ultrasound technology: Description of mechanisms and impact on its germination and main components. Scientific Reports, 6, Article 38996. https://doi.org/10.1038/srep38996
Moscoso, W., Bourne, M. C., & Hood, L. F. (1984). Relationships between the hard-to-cook phenomenon in red kidney beans and water absorption, puncture force, pectin, phytic acid, and minerals. Journal of Food Science, 49(6), 1577–1583. https://doi.org/10.1111/j.1365-2621.1984.tb12848.x
Nakitto, A. M., Muyonga, J. H., & Nakimbugwe, D. (2015). Effects of combined traditional processing methods on the nutritional quality of beans. Food Science & Nutrition, 3(3), 233–241. https://doi.org/10.1002/fsn3.209
Nkundabombi, M. G., Nakimbugwe, D., & Muyonga, J. H. (2016). Effect of processing methods on nutritional, sensory, and physicochemical characteristics of biofortified bean flour. Food Science & Nutrition, 4(3), 384–397. https://doi.org/10.1002/fsn3.301
Nout, M. J. R., & Kiers, J. L. (2005). Tempe fermentation, innovation and functionality: Update into the third millenium. Journal of Applied Microbiology, 98(4), 789–805. https://doi.org/10.1111/j.1365-2672.2004.02471.x
Nyakuni, G. A., Kikafunda, J. K., Muyonga, J. H., Kyamuhangire, W. M., Nakimbugwe, D., & Ugen, M. (2008). Chemical and nutritional changes associated with the development of the hard-to-cook defect in common beans. International Journal of Food Sciences and Nutrition, 59(7–8), 652–659. https://doi.org/10.1080/09637480701602886
Owuamanam, C., Ogueke, C., Iwouno, J., & Edom, T. (2014). Use of seed sprouting in modification of food nutrients and pasting profile of tropical legume flours. Nigerian Food Journal, 32(1), 117–125. https://doi.org/10.1016/S0189-7241(15)30104-1
Paredes-López, O., Reyes-Moreno, C., Montes-Rivera, R., & Carabez-Trejo, A. (1989). Hard-to-cook phenomenon in common beans- influence of growing location and hardening procedures. International Journal of Food Science & Technology, 24(5), 535–542. https://doi.org/10.1111/j.1365-2621.1989.tb00677.x
Parmar, N., Singh, N., Kaur, A., & Thakur, S. (2017). Comparison of color, anti-nutritional factors, minerals, phenolic profile and protein digestibility between hard-to-cook and easy-to-cook grains from different kidney bean (Phaseolus vulgaris) accessions. Journal of Food Science and Technology, 54(4), 1023–1034. https://doi.org/10.1007/s13197-017-2538-3
Paula, L. C., Lemes, A. C., Valencia-Mejía, E., Moreira, B. R., Oliveira, T. S., Campos, I. T. N., Neri, H. F. S., Brondani, C., Ghedini, P. C., Batista, K. A., & Fernandes, K. F. (2022). Effect of extrusion and autoclaving on the biological potential of proteins and naturally-occurring peptides from common beans: Antioxidant and vasorelaxant properties. Food Chemistry: X, 13, Article 100259. https://doi.org/10.1016/j.fochx.2022.100259
Perera, D., Devkota, L., Garnier, G., Panozzo, J., & Dhital, S. (2023). Hard-to-cook phenomenon in common legumes: Chemistry, mechanisms and utilisation. Food Chemistry, 415, Article 135743. https://doi.org/10.1016/j.foodchem.2023.135743
Poblete, T., Rebolledo, K., Barrera, C., Ulloa, D., Valenzuela, M., Valenzuela, C., Pavez, E., Mendoza, R., Narbona, C., González, J., Estevez, S., Ortega, R., & González, C. (2020). Effect of germination and cooking on iron content, phytic acid and lectins of four varieties of chilean beans (Phaseolus vulgaris). Journal of the Chilean Chemical Society, 65(4), 4937–4942. https://doi.org/10.4067/S0717-97072020000404937
Poder Ejecutivo. (2004, septiembre 6). Decreto N° 32149. Reglamento técnico RTCR:384: Frijol en grano. La Gaceta.
Priya, T. S., & Manickavasagan, A. (2020). Common bean. In A. Manickavasagan, & P. Thirunathan (Eds.), Pulses: Processing and product development (pp. 77–98). Springer Cham. https://doi.org/10.1007/978-3-030-41376-7
Ravoninjatovo, M., Ralison, C., Servent, A., Morel, G., Achir, N., Andriamazaoro, H., & Dornier, M. (2022). Effects of soaking and thermal treatment on nutritional quality of three varieties of common beans (Phaseolus vulgaris L.) from Madagascar. Legume Science, 4(4), Article e143. https://doi.org/10.1002/leg3.143
Rebollo-Hernanz, M., Martín-Cabrejas, M. A., & Aguilera, Y. (2019). Thermal processing of legumes. In M. A. Martín-Cabrejas (Ed.), Legumes nutritional quality, processing and potential health benefits (pp. 215–234). The Royal Society of Chemistry.
Richardson, J. C., & Stanley, D. W. (1991). Relationship of loss of membrane functionality and hard-to-cook defect in aged beans. Journal of Food Science, 56(2), 590–591. https://doi.org/10.1111/j.1365-2621.1991.tb05334.x
Rousseau, S., Celus, M., Duijsens, D., Gwala, S., Hendrickx, M., & Grauwet, T. (2020). The impact of postharvest storage and cooking time on mineral bioaccessibility in common beans. Food & Function, 11(9), 7584–7595. https://doi.org/10.1039/D0FO01302A
Roy, M., Imran, M. Z. H., Alam, M., & Rahman, M. (2021). Effect of boiling and roasting on physicochemical and antioxidant properties of dark red kidney bean (Phaseolus vulgaris). Food Research, 5(3), 438–445. https://doi.org/10.26656/fr.2017.5(3).673
Ruiz-Ruiz, J. C., Dávila-Ortíz, G., Chel-Guerrero, L. A., & Betancur-Ancona, D. A. (2012). Wet fractionation of hard-to-cook bean (Phaseolus vulgaris L.) seeds and characterization of protein, starch and fibre fractions. Food and Bioprocess Technology, 5(5), 1531–1540. https://doi.org/10.1007/s11947-010-0451-0
Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition, 2(1), Article 6. https://doi.org/10.1186/s43014-020-0020-5
Sandoval-Peraza, M., Chel-Guerrero, L., & Betancur-Ancona, D. (2021). Some physicochemical and functional properties of the rich fibrous fraction of hardened beans (Phaseolus vulgaris L.) and its addition in the formulation of beverages. International Journal of Gastronomy and Food Science, 26, Article 100440. https://doi.org/10.1016/j.ijgfs.2021.100440
Schoeninger, V., Coelho, S. R. M., & Bassinello, P. Z. (2017). Industrial processing of canned beans. Ciência Rural, 47(5), Article e20160672. https://doi.org/10.1590/0103-8478cr20160672
Segura-Campos, M. R., Cruz-Salas, J., Chel-Guerrero, L., & Betancur-Ancona, D. (2014). Chemical and functional properties of hard-to-cook bean (Phaseolus vulgaris) protein concentrate. Food and Nutrition Sciences, 5(21), 2081–2088. https://doi.org/10.4236/fns.2014.521220
Segura-Campos, M. R., García-Rodríguez, K., Ruiz-Ruiz, J. C., Chel-Guerrero, L., & Betancur-Ancona, D. (2015). Effect of incorporation of hard-to-cook bean (Phaseolus vulgaris L.) protein hydrolysate on physical properties and starch and dietary fiber components of semolina pasta. Journal of Food Processing and Preservation, 39(6), 1159–1165. https://doi.org/10.1111/jfpp.12330
Srisuma, N., Hammerschmidt, R., Uebersax, M. A., Ruengsakulrach, S., Bennink, M. R., & Hosfield, G. L. (1989). Storage induced changes of phenolic acids and the development of hard-to-cook in dry beans (Phaseolus vulgaris var. Seafarer). Journal of Food Science, 54(2), 311–314. https://doi.org/10.1111/j.1365-2621.1989.tb03069.x
Stanley, D. W. (1992). A possible role for condensed tannins in bean hardening. Food Research International, 25(3), 187–192. https://doi.org/10.1016/0963-9969(92)90136-S
Ueno, S., Shigematsu, T., Karo, M., Hayashi, M., & Fujii, T. (2015). Effects of high hydrostatic pressure on water absorption of Adzuki beans. Foods, 4(2), 148–158. https://doi.org/10.3390/foods4020148
Varriano-Marston, E., & Jackson, G. M. (1981). Hard-to-Cook phenomenon in beans: Structural changes during storage and imbibition. Journal of Food Science, 46(5), 1379–1385. https://doi.org/10.1111/j.1365-2621.1981.tb04179.x
Vaz Patto, M. C., Amarowicz, R., Aryee, A. N. A., Boye, J. I., Chung, H.-J., Martín-Cabrejas, M. A., & Domoney, C. (2015). Achievements and challenges in improving the nutritional quality of food legumes. Critical Reviews in Plant Sciences, 34(1–3), 105–143. https://doi.org/10.1080/07352689.2014.897907
Venkatesh, M. S., & Raghavan, G. S. V. (2004). An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering, 88(1), 1–18. https://doi.org/10.1016/j.biosystemseng.2004.01.007
Wainaina, I., Kyomugasho, C., Wafula, E., Sila, D., & Hendrickx, M. (2022). An integrated kinetic and polymer science approach to investigate the textural stability of red kidney beans during post-harvest storage and subsequent cooking. Food Research International, 154, Article 110988. https://doi.org/10.1016/j.foodres.2022.110988
Wainaina, I., Lugumira, R., Wafula, E., Kyomugasho, C., Sila, D., & Hendrickx, M. (2022). Insight into pectin-cation-phytate theory of hardening in common bean varieties with different sensitivities to hard-to-cook. Food Research International, 151, Article 110862. https://doi.org/10.1016/j.foodres.2021.110862
Wainaina, I., Wafula, E., Sila, D., Kyomugasho, C., Grauwet, T., Van Loey, A., & Hendrickx, M. (2021). Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3690–3718. https://doi.org/10.1111/1541-4337.12770
Wang, N., Hou, A., Santos, J., & Maximiuk, L. (2017). Effects of cultivar, growing location, and year on physicochemical and cooking characteristics of dry beans (Phaseolus vulgaris). Cereal Chemistry, 94(1), 128–134. https://doi.org/10.1094/CCHEM-04-16-0124-FI
Worku, A., & Sahu, O. (2017). Significance of fermentation process on biochemical properties of Phaseolus vulgaris (red beans). Biotechnology Reports, 16, 5–11. https://doi.org/10.1016/j.btre.2017.09.001
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tania Chacón-Ordóñez, Stefanny Campos-Boza, Paola Gamboa-Moreno, Néstor Felipe Chaves-Barrantes , Óscar Acosta-Montoya
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).