Modelo predictivo de la severidad del tizón foliar por Cercospora kikuchii mediante variables meteorológicas

Autores/as

  • M. Lavilla Universidad Nacional del Noroeste de la provincia de Buenos Aires, Buenos Aires, Argentina https://orcid.org/0000-0002-7282-4696
  • M. Martínez Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
  • A. Ivancovich Universidad Nacional del Noroeste de la provincia de Buenos Aires, Buenos Aires, Argentina
  • A. Díaz-Paleo Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina

DOI:

https://doi.org/10.15517/am.2023.54430

Palabras clave:

Glycine max, hongo, patología, plaga

Resumen

Introducción. En el manejo integrado de enfermedades es importante incorporar elementos como umbrales de daño económico, monitoreo y sistemas de pronóstico de riesgo, los cuales constituyen herramientas para definir estrategias de control de las mismas. Objetivo. Desarrollar un modelo predictivo de la severidad del tizón foliar por Cercospora (TFC) mediante variables meteorológicas para el norte de la provincia de Buenos Aires, Argentina. Materiales y métodos. Se contó con datos de incidencia y severidad del TFC correspondientes a cinco ciclos productivos de soja (2013-2017) de Pergamino, Buenos Aires, relevados en distintos estados reproductivos R1 a R7. La variable dependiente fue la probabilidad de ocurrencia de niveles categorizados de la tasa de incremento (TI) de la severidad del TFC causado por C. kikuchii. Los elementos y variables meteorológicas utilizados fueron registros diarios de temperatura máxima y mínima, precipitación y humedad relativa. Se calculó el coeficiente de correlación no paramétrico de Kendall Tau-b entre los niveles categorizados binariamente de TI de la severidad del TFC y las variables meteorológicas. Resultados. Las variables meteorológicas con mayor correlación en relación con la TI del TFC fueron aquellas relacionadas con la humedad relativa (DHR, MOJRO, DHRT). La inclusión de una variable térmica (GDTmax) resultó importante para el ajuste del modelo predictivo. Conclusión. Se pudo desarrollar un modelo de predicción de la severidad del TFC que incluyó dos variables meteorológicas, una relacionada con los días la humedad relativa y otra térmica relacionada con un límite de temperatura máxima para el desarrollo de la enfermedad. Para validar y robustecer el modelo propuesto es necesario contar con más datos de severidad a través de los años.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agrios, G. N. (2005). Plant pathology (5th Ed.). Elsevier Academic Press.

Bombelli, E. C. (2011). Modelado para la predicción de enfermedades en cultivos de alto valor comercial [Tesis de Maestría, Universidad Tecnológica Nacional]. Universidad Tecnológica Nacional. http://www.edutecne.utn.edu.ar/tesis/modelado_prediccion_enfermedades.pdf

Carmona, M., Moschini, R., Cazenave, G., & Sautua, F. (2010). Relación entre la precipitación registrada en estados reproductivos de la soja y la severidad de Septoria glycines y Cercospora kikuchii. Tropical Plant Pathology, 35(2), 71-78. https://doi.org/10.1590/s1982-56762010000200001

De Wolf, E. D., & Isard, S. A. (2007). Disease cycle approach to plant disease prediction. Annual Review of Phytopathology, 45(1), 203-220. https://doi.org/10.1146/annurev.phyto.44.070505.143329

El Jarroudi, M., Kouadio, L., Bock, C. H., El Jarroudi, M., Junk, J., Pasquali, M., Maraite, H., & Delfosse, P. (2017). A threshold-based weather model for predicting stripe rust infection in winter wheat. Plant Disease, 101(5), 693-703. https://doi.org/10.1094/pdis-12-16-1766-re

Fehr, W. R., Caviness, C. E., Burmood, D. T., & Pennington, J. S. (1971). Stage of development descriptions for soybeans, Glycine max (L.) Merrill 1. Crop Science, 11(6), 929-931. https://doi.org/10.2135/cropsci1971.0011183x001100060051x

Henderson, D., Williams, C. J., & Miller, J. S. (2007). Forecasting late blight in potato crops of Southern Idaho using logistic regression analysis. Plant Disease, 91(8), 951-956. https://doi.org/10.1094/pdis-91-8-0951

Hughes, G, McRoberts, N., Madden, L. V., & Nelson, S. C. (1997). Validating mathematical models of plant-disease progress in space and time. Mathematical Medicine and Biology, 14(2), 85-112. https://doi.org/10.1093/imammb/14.2.85

Lavilla, M., & Ivancovich, A. (2021). Relación entre enfermedades y rendimiento de granos de soja. Agronomía Mesoamericana, 32(2), 141-148. https://doi.org/10.15517/am.v32i2.44057

Lavilla, M., Ivancovich, A. J., & Díaz-Paleo, A. (2021). Diagrammatic scale for assessment the severity of Cercospora leaf blight on soybean (Glycine max) leaflets. Agronomía Mesoamericana, 33(1), Article 43338. https://doi.org/10.15517/am.v33i1.43338

Lavilla, M., Ivancovich, A., & Díaz-Paleo, A. (2022). Tizón Foliar y la Mancha Púrpura de la semilla causados por Cercospora kikuchii en soja (Glycine max L. Merr.). Agronomía Mesoamericana, 33(3), Artículo 48944. https://doi.org/10.15517/am.v33i3.48494

March, G. J., Oddino, C. M., & Marinelli, A. D. (2010). Manejo de enfermedades de los cultivos según parámetros epidemiológicos (1ª ed.). Biglia Impresores.

Moschini, R. C., Sisterna, M. N., & Carmona, M. A. (2006). Modelling of wheat black point incidence based on meteorological variables in the southern Argentinean Pampas region. Australian Journal of Agricultural Research, 57(11), 1151-1156. https://doi.org/10.1071/ar05275

Montes, C., Ghulam Hussain, S., & Krupnik, T. J. (2022). Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: results from a continental-scale modeling approach. International Journal of Biometeorology, 66(11), 2237-2249. https://doi.org/10.1007/s00484-022-02352-9

Yadav, R., Bharti, O., Pandya, R. K., Thakur, M. P., & Yadav, A. (2016). Correlation study of individual meteorological parameters and disease severity for prediction of pearl millet blast. International Journal of Current Research, 8(11), 41580-41582. http://www.journalcra.com/article/correlation-study-individual-meteorological-parameters-and-disease-severity-prediction-pearl

Publicado

2023-07-14

Cómo citar

Lavilla, M., Martínez, M., Ivancovich, A., & Díaz-Paleo, A. (2023). Modelo predictivo de la severidad del tizón foliar por Cercospora kikuchii mediante variables meteorológicas. Agronomía Mesoamericana, 34(3), 54430. https://doi.org/10.15517/am.2023.54430

Artículos más leídos del mismo autor/a