Sensibilidad del cultivo de maíz (Zea mays L.) a diferentes períodos de déficit hídrico controlado
DOI:
https://doi.org/10.15517/am.2024.55660Palabras clave:
cambio climático, sequias, crecimiento, rendimientoResumen
Introducción. El maíz es uno de los granos alimenticios más antiguos conocido. Con el cambio climático y las sequías severas y frecuentes, se reducirá el agua disponible en el suelo. El déficit hídrico afecta en diversos grados el desarrollo del cultivo de maíz y la sensibilidad a este estrés varía en las diferentes etapas de desarrollo. Objetivo. Identificar las etapas fenológicas más sensibles al déficit hídrico en el cultivo de maíz. Materiales y métodos. El experimento se realizó durante dos ciclos en los años 2020 y 2021 en El Ejido, Provincia de Los Santos, Panamá. Se desarrolló bajo condiciones semicontroladas en la casa de cultivo del Instituto Coronel Segundo de Villarreal. Se utilizó el híbrido de maíz comercial ADV-9293. El manejo agronómico se realizó según las recomendaciones del Instituto de Innovación Agropecuaria de Panamá (IDIAP). Durante todo el ciclo del cultivo, se determinaron las variables altura de planta, largo y ancho de hojas, diámetro del tallo, biomasa y los componentes del rendimiento como número de hileras por mazorca, número de granos por hilera y peso de cien granos. También, se determinó la humedad del suelo por el método gravimétrico. El déficit hídrico en distintas etapas se generó a través de la simulación de sequía. Resultados. El rendimiento de grano del testigo superó los diferentes tratamientos evaluados con 12,83 t ha-1, seguido por el tratamiento con estrés en el llenado de grano con 10,31 t ha-1. Se determinaron dos períodos más sensibles al déficit hídrico; los cuales son las etapas comprendidas desde los 20 a 35 y 40 a 55 dds. El déficit hídrico, durante las diferentes etapas fenológicas del cultivo, tuvo un impacto negativo en el contenido relativo de clorofilas. Conclusión. Las etapas de prefloración y floración resultaron más sensibles a la deficiencia hídrica en el cultivo del maíz.
Descargas
Citas
Bänziger, M., Edmeades, G. O., Beck, D., & Bellon, M. (2012). De la teoría a la práctica. Mejoramiento para aumentar la tolerancia a sequía y a deficiencia de nitrógeno en el maíz (Manual técnico). Centro Internacional de Mejoramiento de Maíz y Trigo. https://repository.cimmyt.org/server/api/core/bitstreams/1abb894c-3068-45bb-9df3-951df971f110/content
Castañeda Saucedo, M. C., Córdova Téllez, L., González Hernández, V. A., Delgado Alvarado, A., Santacruz Varela, A., & García de los Santos, G. (2006). Respuestas fisiológicas, rendimiento y calidad de semilla en frijol sometido a estrés hídrico. Interciencia, 31(6), 461–466.
Castellanos-Reyes, M. A., Valdés-Carmenate, R., López-Gómez, A., Guridi-Izquierdo, G. (2017). Mediciones de índices de verdor relacionadas con área foliar y productividad de híbrido de maíz. Cultivos Tropicales, 38(3), 112–116. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/16
Centro Internacional de Mejoramiento de Maíz y Trigo. (2013). Contenido de humedad del suelo. Guía útil para comparar las prácticas de manejo de cultivo. https://repository.cimmyt.org/server/api/core/bitstreams/0dd5219e-3b2a-40f9-bf61-cfa030cd1e2d/content
Chen, Y., Marek, G. W., Marek, T. H., Gowda, P. H., Xue, Q., Moorhead, J. E., Brauer, D. K., Srinivasan, R., & Heflin, K. R. (2019). Multisite evaluation of an improved SWAT irrigation scheduling algorithm for corn (Zea mays L.) production in the U.S. Southern Great Plains. Environmental Modelling & Software, 118, 23–34. https://doi.org/10.1016/j.envsoft.2019.04.001
Di Benedetto, A., & Tognetti, J. (2016). Técnicas de análisis de crecimiento de plantas: su aplicación a cultivos intensivos. Revista de Investigación Agropecuaria, 42(3), 258–282. https://host170.sedici.unlp.edu.ar/server/api/core/bitstreams/798ef0ab-ff4f-4b25-b779-2a13bbcb5c27/content
Dunn, B. L., Singh, H., & Goad, C. (2018). Relationship between chlorophyll meter readings and nitrogen in poinsettia leaves. Journal of Plant Nutrition, 41(12), 1566–1575. https://doi.org/10.1080/01904167.2018.1459697
Fernández Lizarazo, J. C. (2022). Respuesta fisiológica de plantas de cacao al déficit hídrico cuando son inoculadas con HFMA. Utopía - Working papers, Artículo 11. https://doi.org/10.19052/wp.utopia.2022.3
Geerts, S., & Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 96(9), 1275–1284. https://doi.org/10.1016/j.agwat.2009.04.009
Gheysari, M., Sadeghi, S-H., Loescher, H. W., Amiri, S., Zareiana, M. J., Majidif, M. M., Asgarinia, P., & Payero, J. O. (2017). Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize. Agricultural Water Management, 182, 126–138. https://doi.org/10.1016/j.agwat.2016.12.014
Giménez, L. (2012). Producción de maíz con estrés hídrico provocado en diferentes etapas de desarrollo. Agrociencia Uruguay, 16(2), 92–102. https://agrocienciauruguay.uy/index.php/agrociencia/article/view/544/544
Gordón–Mendoza, R. (2020). Variabilidad climática y su efecto sobre la producción de maíz (Manual técnico). Instituto de Innovación Agropecuaria de Panamá. https://proyectos.idiap.gob.pa/uploads/adjuntos/VARIABILIDAD_CLIMATICA_Y_SU_EFECTO_SOBRE_LA_PRODUCCI%C3%93N_DE_MA%C3%8DZ.pdf
Gordón Mendoza, R. (2021). El maíz en Panamá: características, requerimientos y recomendaciones para su producción en ambientes con alta variabilidad climática Panamá (Manual Técnico). Instituto de Innovación Agropecuaria de Panamá. https://proyectos.idiap.gob.pa/uploads/adjuntos/manual_tecnico_el_maiz_en_panama.pdf
Kresović, B., Tapanarova, A., Tomić, Z., Životić, L., Vujović, D., Sredojević, Z., & Gajić, B. (2016). Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate. Agricultural Water Management, 169, 34–43. https://doi.org/10.1016/j.agwat.2016.01.023
Méndez Natera, J., Ybarra Pérez, F., Merazo Pinto, J. (2010). Germinación y Desarrollo de Plántulas de Tres Híbridos de Maíz bajo Soluciones Osmóticas. V. Polietilenglicol. Revista Tecnológica ESPOL-RTE, 23(1), 49–54. http://200.10.150.204/index.php/tecnologica/article/view/35/7
Naresh Kumar, S., & Singh, C. P. (2001). Growth analysis of maize during long and short duration crop seasons: Influence of nitrogen source and dose. Indian Journal of Agricultural Research, 35(1), 13–18. https://arccjournals.com/journal/indian-journal-of-agricultural-research/ARCC3038
Núñez-Cano, J. I., Gordón-Mendoza, R., Franco-Barrera, J., Jaén-Villarreal J., Sáez-Cigarruista, A., Ramos-Manzané, F., Ávila-Guevara, A. (2018). Índice hídrico de dos cultivares de maíz bajo dos sistemas de siembra. Ciencia Agropecuaria, 29, 99–111. http://revistacienciaagropecuaria.ac.pa/index.php/ciencia-agropecuaria/article/view/155/121
Quintal Ortiz, W., Pérez-Gutiérrez, A., Latournerie Moreno, L., May-Lara, C., Ruiz Sánchez, E., & Martínez Chacón, A. (2012). Uso de agua, potencial hídrico y rendimiento de chile habanero (Capsicum chinense Jacq.). Revista Fitotecnia Mexicana, 35(2), 155–160. https://revistafitotecniamexicana.org/documentos/35-2/6a.pdf
Quintana-Escobar, A. O., Iracheta-Donjuan, L., Méndez-López, I., & Alonso-Báez, M. (2017). Caracterización de genotipos de elite de Coffea canephora por su tolerancia a sequía. Agronomía Mesoamericana, 28(1), 183–198. https://doi.org/10.15517/am.v28i1.23874
Razquin, C. J., Maddonni, G. A., & Vega, C. C. R (2017). Estimación no destructiva del área foliar en plantas individuales de maíz (Zea mays L.) creciendo en canopeos. AgriScientia, 34(1), 27–38. https://doi.org/10.31047/1668.298x.v34.n1.17356
Rodríguez-Correa, D., Bonet-Pérez, C., Mola-Fines, B. de la C., Guerrero-Posada, P. A., Martínez-Der, C., & Machado-Carballo, M. (2022). Estrategias de riego deficitario controlado para el cultivo del frijol. Revista Ingeniería Agrícola, 12(1), 54–58.
Serra-Wittling, C., Molle, B., & Cheviron, B. (2019). Plot level assessment of irrigation water savings due to the shift from sprinkler to localized irrigation systems or to the use of soil hydric status probes. Application in the French context. Agricultural Water Management, 223, Article 105682. https://doi.org/10.1016/j.agwat.2019.06.017
Sifuentes-Ibarra, E., Ojeda-Bustamante, W., Macías-Cervantes, J., Mendoza-Pérez, C., & Preciado-Rangel, P. (2021). Déficit hídrico en maíz al considerar fenología, efecto en rendimiento y eficiencia en el uso del agua. Agrociencia, 55(3), 209–226. https://agrociencia-colpos.org/index.php/agrociencia/article/view/2414
Smith, M. (1992). CROPWAT: a computer program for irrigation planning and management. Food and Agriculture Organization of the United Nations.
Song, L., Jin, J., & He, J. (2019). Effects of severe water stress on maize growth processes in the field. Sustainability, 11(18), Article 5086. https://doi.org/10.3390/su11185086
Tapia Chávez, R. G., León, Aguilar, R. V., & Torres García, C. A. (2021). Riego deficitario y densidad de siembra en indicadores morfofisiológicos y productivos de híbrido de maíz. Revista Espamciencia, 12(2), 131–140. https://revistasespam.espam.edu.ec/index.php/Revista_ESPAMCIENCIA/article/view/269
Villalobos-González, A., López-Castañeda, C., Miranda-Colín, S., Aguilar-Rincón, V. H., & López-Hernández, M. (2016). Relaciones hídricas en maíces de Valles Altos de la Mesa Central de México en condiciones de sequía y fertilización nitrogenada. Revista Mexicana de Ciencias Agrícolas, 7(7), 1651–1665. https://cienciasagricolas.inifap.gob.mx/index.php/agricolas/article/view/157
Wang, Y., Janz, B., Engedal, T., & de Neergaard, A. (2017). Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize. Agricultural Water Management, 179, 271–276. https://doi.org/10.1016/j.agwat.2016.06.007
Zhu, J., Tremblay, N., & Liang, Y. (2012). Comparing SPAD and at LEAF values for chlorophyll assessment in crop species. Canadian Journal of Soil Science, 92(4), 645–648. https://doi.org/10.4141/cjss2011-100
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Ana Sáez-Cigarruista, Donaldo Morales-Guevara, Román Gordón-Mendoza, Jorge Jaén-Villarreal, Francisco Ramos-Manzané
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).