¿Estadística de supervivencia o tradicional?. Estimación de vida útil de premezcla de maíz morado (Zea mays L.) *

Autores/as

DOI:

https://doi.org/10.15517/am.2024.60261

Palabras clave:

almacenamiento de alimentos, técnicas de predicción, modelos estadísticos, evaluación sensorial, harina de maíz

Resumen

Introducción. Dado que el proceso de desarrollo de un producto no está completo si no se conoce su tiempo de vida útil, la obtención de un producto novedoso como una premezcla para pancakes a base de harina de maíz morado planteó la necesidad de determinarla. Objetivo. Estimar la vida útil de una premezcla para pancakes a base de harina de maíz pujagua (Zea mays L.), utilizando el análisis de datos de regresión lineal y de estadística de supervivencia para comparar ambas metodologías. Materiales y métodos. El estudio se efectuó en el Centro Nacional de Ciencia y Tecnología de Alimentos (CITA) de la Universidad de Costa Rica, de 2018 a 2023. Se realizó el estudio de almacenamiento de la premezcla para pancakes con tres repeticiones, en una cámara a 25 °C y muestras control a -18 °C por 7,5 meses, con nueve tiempos de muestreo, cuya frecuencia fue de 26 días. Para los pancakes se analizaron las variables sensoriales masticabilidad y sabor atípico; para la premezcla se seleccionó la variable olor atípico. Se realizó una prueba de agrado con consumidores (n=100). Con estos resultados y los datos del panel con jueces entrenados, se calcularon dos valores de vida útil, uno con el método de punto de corte y otro con la distribución de Weibull. Resultados. La variable sensorial que limitó la vida útil de la premezcla fue la masticabilidad. Con la primera metodología se estimó un valor de vida útil de 124 días y con la segunda el valor fue de 265 días a 25 °C. Conclusiones. El método de punto de corte fue más conservador y sensible a las variables críticas seleccionadas. El método de distribución de Weibull resultó más práctico, pero se debe ser cuidadoso al evaluar productos poco familiares o de los cuales los consumidores manejan escasa información.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Arellano Vázquez, J. L., Tut Couoh, C., Ramírez, A. M., Salinas Moreno, Y., & Taboada Gaytán, O. R. (2003). Maíz azul de los Valles Altos de México. I. Rendimiento de grano y caracteres agronómicos. Revista Fitotecnia Mexicana, 26(2), 101–107. https://doi.org/10.35196/rfm.2003.2.101

Awulachew, M. T. (2021). Understanding to the shelf-life and product stability of foods. Journal of Food Technology and Preservation, 5(8), 1–5. https://www.alliedacademies.org/articles/understanding-to-the-shelflife-and-product-stability-of-foods.pdf

Bustamante, B. (2022). Aplicación de dos metodologías (de punto de corte y de riesgos acumulados de Weibull) para la determinación de la vida útil del pan de molde blanco. Revista de Investigación Agropecuaria Science and Biotechnology, 2(2), 25–38. https://doi.org/10.25127/riagrop.20222.826

Cardelli, C., & Labuza, T. P. (2001). Application of Weibull hazard analysis to the determination of the shelf life of roasted and ground coffee. LWT - Food Science and Technology, 34(5), 273–278. https://doi.org/10.1006/FSTL.2000.0732

Chacón Lizano, M. (2017, septiembre 27). Evolución del cultivo de maíz en Costa Rica. Oficina Nacional de Semillas. Recuperado el 19 de abril, 2024, de http://ofinase.go.cr/certificacion-de-semillas/certificacion-de-semillas-de-maiz/evolucion-cultivo-maiz/

Corradini, M. G. (2018). Shelf life of food products: from open labeling to real-time measurements. Annual Review of Food Science and Technology, 9, 251–269. https://doi.org/10.1146/annurev-food-030117-012433

Cruz, A. G., Walter, E. H. M., Silva Cadena, R., Faria, J. A. F., Bolini, H. M. A., Pinheiro, H. P., & Sant´Ana, A. S. (2010). Survival analysis methodology to predict the shelf-life of probiotic flavored yogurt. Food Research International, 43(5), 1444–1448. http://dx.doi.org/10.1016/j.foodres.2010.04.028

Cueva Ríos, M. A., Fernández Rosillo, F., Quiñones Huatangari, L., & Cabrejos Barrios, E. M. (2023). Estimation of coffee shelf life under accelerated storage conditions using mathematical models - Systematic review. Czech Journal of Food Sciences, 41(2), 92–102. https://doi.org/10.17221/163/2022-CJFS

Curia, A., Aguerrido, M., Langohr, K., & Hough, G. (2006). Survival analysis applied to sensory shelf life of yogurts–I: Argentine formulations. Journal of Food Science, 70(7), s442–s445. https://doi.org/10.1111/J.1365-2621.2005.TB11489.X

de Bouillé, A. G., & Beeren, C. J. M. (2016). Sensory evaluation methods for food and beverage shelf life assessment. In P. Subramaniam (Ed.), The stability and shelf life of food (2nd ed., pp. 199–228). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100435-7.00007-1

Elías, C., Salas, W., de Mendiburu, F., & de la Cruz, W. (2011). Estimación del tiempo de vida útil de pan de molde con incorporación de harina de quinua (Chenopodium quinoa Willd) y suero, usando la distribución de Weibull. Anales Científicos, 72(1), 27–33. https://doi.org/10.21704/ac.v72i1.874

Garitta, L., & Hough, G. (2012). Modeling shelf life using survival analysis methodologies. In M. C. Nicoli (Ed.), Shelf-life assessment of food (pp. 169–197). CRC Press.

Garitta, L., Langohr, K., Gómez, G., Hough, G., & Beeren, C. (2015). Sensory cut-off point obtained from survival analysis statistics. Food Quality and Preference, 43, 135–140. https://doi.org/10.1016/J.FOODQUAL.2015.02.012

Giménez, A., & Ares, G. (2019). 11- Sensory shelf life estimation. In C. M. Galanakis (Ed.), Food quality and shelf life (pp. 333–357). Academic Press. https://doi.org/10.1016/B978-0-12-817190-5.00011-2

Giménez, A., Ares, F., & Ares, G. (2012). Sensory shelf-life estimation: A review of current methodological approaches. Food Research International, 49(1), 311–325. https://doi.org/10.1016/J.FOODRES.2012.07.008

Giménez, A., Ares, G., & Gámbaro, A. (2008). Survival analysis to estimate sensory shelf life using acceptability scores. Journal of Sensory Studies, 23(5), 571–582. http://dx.doi.org/10.1111/j.1745-459X.2008.00173.x

Giménez, A., Varela, P., Salvador, A., Ares, G., Fiszman, S., & Garitta, L. (2007). Shelf life estimation of brown pan bread: A consumer approach. Food Quality and Preference, 18(2), 196–204. https://doi.org/10.1016/J.FOODQUAL.2005.09.017

Hasjim, J., Lee, S.-O., Hendrich, S., Setiawan, S., Ai, Y., & Jane, J.-l. (2010). Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chemistry, 87(4), 257–262. http://dx.doi.org/10.1094/CCHEM-87-4-0257

Hough, G. (2010). Sensory shelf life estimation of food products (1st ed.). CRC Press. https://doi.org/10.1201/9781420092943

Hough, G., & Fiszman, S.(2005). Estimación de la vida útil sensorial de los alimentos (1ª ed.). Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo.

Hough, G., & Garitta, L. (2012). Methodology for sensory shelf-life estimation: A review. Journal of Sensory Studies, 27(3), 137–147. https://doi.org/10.1111/J.1745-459X.2012.00383.X

Hough, G., Garitta, L., & Gómez, G. (2006). Sensory shelf-life predictions by survival analysis accelerated storage models. Food Quality and Preference, 17(6), 468–473. http://dx.doi.org/10.1016/j.foodqual.2005.05.009

Hough, G., Langohr, K., Gómez, G., & Curia, A. (2003). Survival analysis applied to sensory shelf life of foods. Journal of Food Science, 68(1), 359–362. http://dx.doi.org/10.1111/j.1365-2621.2003.tb14165.x

Instituto Nacional de Estadística y Censos. (2018, noviembre 19). Encuesta nacional agropecuaria. 2017. Resultados generales de la actividad agrícola y forestal. Recuperado el 19 de abril, 2024, de http://www.inec.go.cr/multimedia/encuesta-nacional-agropecuaria-2017-resultados-generales-de-la-actividad-agricola-y

Instituto Nacional de Estadística y Censos. (2019). Comercio exterior 2018. Estadísticas de comercio exterior. Recuperado el 19 de abril, 2024, de https://inec.cr/multimedia/comercio-exterior-2018-estadisticas-comercio-exterior

Ishaq, A. I., & Abiodun, A. A. (2020). The Maxwell–Weibull distribution in modeling lifetime datasets. Annals of Data Science, 7, 639–662. https://doi.org/10.1007/s40745-020-00288-8

Labuschagne, M., Phalafala, L., Osthoff, G., & van Biljon, A. (2014). The influence of storage conditions on starch and amylose content of South African quality protein maize and normal maize hybrids. Journal of Stored Products Research, 56, 16–20. http://dx.doi.org/10.1016/j.jspr.2013.11.004

Lazzari, L. (2017). 8- Statistical analysis of corrosion data. In L. Lazzari (Ed.), Engineering tools for corrosion (Vol. 68, pp. 131–148). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102424-9.00008-2

López-Duarte, A. L., & Vidal-Quintanar, R. L. (2009). Oxidation of linoleic acid as a marker for shelf life of corn flour. Food Chemistry, 114(2), 478–483. http://dx.doi.org/10.1016/j.foodchem.2008.09.105

Man, C. M. D. (2015). Shelf life (2nd ed.). John Wiley & Son.

Mayorga, A. L., & Pérez, A. M. (2018). Maíz morado. En S. G. Sáyago Ayerdi, & E. Álvarez Parrilla (Eds.), Alimentos vegetales autóctonos iberoamericanos subutilizados (pp. 161–176). Fabro Editores.

Mestres, C., Nago, M., Akissoë, N., & Matencio, F. (1997). End use quality of some African corn kernels. 2. Cooking behavior of whole dry-milled maize flours; incidence of storage. Journal of Agricultural and Food Chemistry, 45(3), 565–571. https://doi.org/10.1021/jf9605660

Onyeoziri, I. O., Torres-Aguilar, P., Hamaker, B. R., Taylor, J. R. N., & de Kock, H. L. (2021). Descriptive sensory analysis of instant porridge from stored wholegrain and decorticated pearl millet flour cooked, stabilized and improved by using a low-cost extruder. Journal of Food Science, 86(9), 3824–3838. http://dx.doi.org/10.1111/1750-3841.15862

Quispe, P., & Macavilca, E. A. (2019). Optimización sensorial de un néctar mixto de papaya y maracuyá aplicando el análisis de supervivencia a la respuesta de los consumidores. Peruvian Agricultural Research, 1(1), 1–6. https://doi.org/10.51431/par.v1i1.475

Salman, H., & Copeland, L. (2007). Effect of storage on fat acidity and pasting characteristics of wheat flour. Cereal Chemistry, 84(6), 600–606. http://dx.doi.org/10.1094/CCHEM-84-6-0600

Salvador, A., Varela, P., Fiszman, S. M., & Gómez, G. (2006). Estimating the shelf life of brown pan bread, suitability of survival analysis methodology. Journal of Food Science, 71(4), S321–S325. http://dx.doi.org/10.1111/j.1750-3841.2006.00002.x

Sánchez-González, J. A., & Pérez Cueva, J. A. (2016). Vida útil sensorial del queso mantecoso por pruebas aceleradas. Scientia Agropecuaria, 7(3), 215–222. https://doi.org/10.17268/sci.agropecu.2016.03.08

Shobha, D., Dileep kumar, H. V., Sreeramasetty, T. A., Puttaramanaik, Pandurange Gowda, K. T., & Shivakumar, G. B. (2014). Storage influence on the functional, sensory and keeping quality of quality protein maize flour. Journal of Food Science and Technology, 51, 3154–3162. http://dx.doi.org/10.1007/s13197-012-0788-7

Villanueva, N. D. M., Petenate, A. J., & Da Silva, M. A. A. P. (2005). Performance of the hybrid hedonic scale as compared to the traditional hedonic, self-adjusting and ranking scales. Food Quality and Preference, 16(8), 691–703. https://doi.org/10.1016/j.foodqual.2005.03.013

Publicado

2024-11-15

Cómo citar

Morales-Herrera, I., López-Vargas, E., Fallas-Rodríguez, P., & Pérez, A. M. (2024). ¿Estadística de supervivencia o tradicional?. Estimación de vida útil de premezcla de maíz morado (Zea mays L.) *. Agronomía Mesoamericana, 35(Especial 1), 60261. https://doi.org/10.15517/am.2024.60261

Artículos más leídos del mismo autor/a