Revista de Ciencias Económicas ISSN Impreso: 0252-9521 ISSN electrónico: 2215-3489

OAI: https://revistas.ucr.ac.cr/index.php/economicas/oai
Implementation of confirmatory factor analysis: a measuring model of reading academic achievement
PDF (Español (España))

Keywords

FACTOR ANALYSIS
VARIANCE-COVARIANCE MATRIX
PISA
ANÁLISIS CAUSAL
MODELOS ESTADÍSTICO
PISA

How to Cite

Fernández Aráuz, A. (2015). Implementation of confirmatory factor analysis: a measuring model of reading academic achievement. Revista De Ciencias Económicas, 33(2), 39–65. https://doi.org/10.15517/rce.v33i2.22216

Abstract

The aim of this paper is to show the differences between exploratory and confirmatory factor analysis. The results obtained with confirmatory factor analysis show that both education and socioeconomic status of the parents of students, as well as material possessions at home are good indicators to measure the latent variable called Socioeconomic Extraction. Moreover, the enjoyment of reading and diversity of reading are good indicators of measurement for the latent variable Personal Attitude of the student, while the student's attitude towards school, which measure attitudes to educational process as a whole and not specifically to the reading is not a good measure for the latent variable of personal attitude. These results suggest that unobservable factors Socioeconomic Extraction, Reading Strategies and personal attitude could be used to assess the causal hypothesis of the effect of these variables on the educational performance of students in the reading test.

https://doi.org/10.15517/rce.v33i2.22216
PDF (Español (España))

References

Brown, T. (2006). Confirmatory factor analysis for applied research. New York: Guilford Press. doi:10.1198/tas.2008.s98

Byrne, B. (1998). Structural equation modeling with ISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Mahwah, NJ: Erl-baum.

Fernández, A. (2013). Análisis de la Resiliencia Educativa de los Estudiantes Costarricenses con datos de la Prueba de Lectura de la Evaluación PISA 2009. Revista de Ciencias Económicas, 31(2), 75–99.

Joreskog, K. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34(2), 183-202. doi: 10.1007/BF02289343

Joreskog, K. (1971). Statistical analysis of sets of congeneric tests. Psychometrika, 36(2), 109-133. doi: 10.1007/BF02291393

Kaplan, D. (2009). Structural equation modeling: foundations and extensions. Segunda edición. Thousand Oaks, CA: Sage. doi:10.4135/9781452226576

Montero, E. (2012). Los modelos de ecuaciones estructurales como herramienta para explorar posibles relaciones causales en investigación educativa: Una ilustración con datos de PISA 2009 en Costa Rica. Aporte Especial. Cuatro Informe del Estado de la Educación. Programa Estado de la Nación en Desarrollo Humano Sostenible.

Mulaik, S. A. (2009). Linear causal modeling with structural equations. New York: CRC Press Taylor & Francis Group. doi: 10.1201/9781439800393

Organización para la Cooperación y el Desarrollo Económico. (2011). Against the Odds: Desadvantaged students who succeed in school. OECD Publishing. doi:10.1787/9789264090873-en

Organización para la Cooperación y el Desarrollo Económico. (2012). PISA 2009 Technical Report. OECD Publishing. doi:10.1787/9789264167872-en

Spearman, C. (1904). General Intelligence, objectively determined and measured. American Journal of Psychology, 15, 201-293. doi:10.2307/1412107

Spearman, C. (1927). The abilities of man. New York: Macmillan.

Thurstone, L. (1947). Multiple-factor analysis. Chicago: University of Chicago. Press.

Comments

Downloads

Download data is not yet available.