Resumo
Objetivo: Identificar e descrever as características dos aplicativos móveis para autogestão do diabetes mellitus tipo 1 em usuários de sistema de infusão contínua de insulina.
Método: Revisão integrativa, com buscas efetuadas no mês de junho de 2020, a partir dos artigos publicados PUBMED, CINAHL, Cochrane Library, Web of Science e Scopus. Considerou-se como critério de elegibilidade estudos que abordavam sobre aplicativos móveis para autogestão do DM1 em usuários de Sistema de Infusão Contínua de Insulina, sem restrição temporal. Foram excluídos apenas estudos indisponíveis.
Resultados: Após a análise de duas revisoras independentes foram incluídos na análise final 14 estudos e identificados 11 aplicativos móveis para smartphones que podem auxiliar no autogerenciamento do DM1, nomeados como iDECIDE, Sugar Sleuth, VoiceDiab, Blip, GoCARB, Nightscout, Gerenciamento Inteligente de Diabetes, Calculadora móvel de troca de Alimentos, Insulin Pump, DiaMob e Diário Interativo sobre Diabetes.
Conclusão: Os aplicativos móveis foram desenvolvidos para promover mudanças de comportamento e ajustes no tratamento de maneira positiva, tanto em resultados clínicos quanto na qualidade de vida e autogestão do diabetes em pessoas com DM1. Aplicativos móveis para smartphones podem auxiliar no autogerenciamento do DM1, por possibilitar auxílio na decisão de aplicação de insulina, controle glicêmico, análise na necessidade de insulina nas refeições, gestão alimentar, cálculo dos componentes alimentares nas refeições, monitoramento contínuo da glicose e cálculo automático de bolus de carboidratos e insulina.
Referências
Akil AA, Yassin E, Al-Maraghi A, Aliyev E, Al-Malki K, Fakhro KA. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. J Transl Med. 2021;19(1):1-19. http://dx.doi.org/10.1186/s12967-021-02778-6
Sora ND, Shashpal F, Bond EA, Jenkins AJ. Insulin Pumps: Review of Technological Advancement in Diabetes Management. Am J Med Sci. 2019; 358(5):326-331. http://dx.doi.org/10.1016/j.amjms.2019.08.008
Galderisi A, Sherr JL. A Technological Revolution: The Integration of New Treatments to Manage Type 1 Diabetes. Pediatr Ann. 2019;48(8):311-318. http://dx.doi.org/10.3928/19382359-20190725-03
Doupis J, Festas G, Tsilivigos C, Efthymiou V, Kokkinos A. Smartphone-Based Technology in Diabetes Management. Diabetes Ther. 2020; 11(3): 607-619. http://dx.doi.org/10.1007/s13300-020-00768-3
McGill DE, Laffel LM, Volkening LK, Butler DA, Levy WL, Wasserman RM, et al. Text Message Intervention for Teens with Type 1 Diabetes Preserves HbA1c: Results of a Randomized Controlled Trial. Diabetes Technol Ther. 2020; 22(5):374-382. http://dx.doi.org/10.1089/dia.2019.0350
Kirwan M, Vandelanotte C, Fenning A, Duncan MJ. Diabetes self-management smartphone application for adults with type 1 diabetes: randomized controlled trial. J Med Internet Res. 2013;15(11):e235. http://dx.doi.org/10.2196/jmir.2588.
Hou C, Carter B, Hewitt J, Francisa T, Mayor S. Do Mobile Phone Applications Improve Glycemic Control (HbA1c) in the Self-management of Diabetes? A Systematic Review, Meta-analysis, and GRADE of 14 Randomized Trials. Diabetes Care. 2016;39(11):2089-2095. http://dx.doi.org/10.2337/dc16-0346.
Bonoto BC, de Araújo VE, Godói IP, de Lemos LL, Godman B, Bennie M, et al. Efficacy of Mobile Apps to Support the Care of Patients With Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. JMIR Mhealth Uhealth. 2017;5(3):1-16. http://dx.doi.org/10.2196/mhealth.6309
Pankowska E, Ladyzynski P, Foltynski P, Mazurczak K. A Randomized Controlled Study of an Insulin Dosing Application That Uses Recognition and Meal Bolus Estimations. J Diabetes Sci Technol. 2017;11(1):43-49. http://dx.doi.org/10.1177/1932296816683409
Foltynski P, Ladyzynski P, Pankowska E, Mazurczak K. Efficacy of automatic bolus calculator with automatic speech recognition in patients with type 1 diabetes: A randomized cross-over trial. J Diabetes. 2018;10(7):600-608. http://dx.doi.org/10.1111/1753-0407.12641
Paul J, Criado AR. The art of writing literature review: what do we know and what do we need to know?. Inter Business Review, 2020; 29 (4): 101717. http://dx.doi.org/10.1016/j.ibusrev.2020.101717.
Mendes KDS, Silveira RCCP, Galvão CM. Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto Contexto Enferm, Florianópolis, 2008; 17(4): 758-64. https://doi.org/10.1590/S0104-07072008000400018
Melnyk BM, Fineout-Overholt E. Making the case for evidence-based practice. In: Melnyk BM, Fineout-Overholt E. Evidence-based practice in nursing & healthcare. A guide to best practice. Philadelphia: Lippincot Williams & Wilkins; p.3-24, 2005.
Karway G, Grando MA, Grimm K, Groat D, Cook C, Thompson B. Self-Management Behaviors of Patients with Type 1 Diabetes: Comparing Two Sources of Patient-Generated Data. Appl Clin Inform. 2020; 11(1):70-78. http://dx.doi.org/10.1055/s-0039-1701002
Toschi E, Fisher L, Wolpert H, Love M, Dunn T, Hayter G. Evaluating a Glucose-Sensor-Based Tool to Help Clinicians and Adults With Type 1 Diabetes Improve Self-Management Skills. J Diabetes Sci Technol. 2018; 12(6):1143-1151. http://dx.doi.org/10.1177/1932296818791534
Ladyzynski P, Krzymien J, Foltynski P, Rachuta M, Bonalska B. Accuracy of Automatic Carbohydrate, Protein, Fat and Calorie Counting Based on Voice Descriptions of Meals in People with Type 1 Diabetes. Nutrients. 2018;10(4):518. http://dx.doi.org/10.3390/nu10040518
Wong JC, Neinstein AB, Look H, Arbiter B, Chokr N, Ross C, Adi S. Pilot Study of a Novel Application for Data Visualization in Type 1 Diabetes. J Diabetes Sci Technol. 2017;11(4):800-807. http://dx.doi.org/10.1177/1932296817691305
Bally L, Dehais J, Nakas CT, Anthimopoulos M, Laimer M, Rhyner D, et al. Carbohydrate Estimation Supported by the GoCARB System in Individuals With Type 1 Diabetes: A Randomized Prospective Pilot Study. Diabetes Care. 2017; 40(2):6-7. http://dx.doi.org/10.2337/dc16-2173
Lee JM, Newman MW, Gebremariam A, Choi P, Lewis D, Nordgren W, et al. Real-World Use and Self-Reported Health Outcomes of a Patient-Designed Do-it-Yourself Mobile Technology System for Diabetes: Lessons for Mobile Health. Diabetes Technol Ther. 2017;19(4):209-219.http://dx.doi.org/10.1089/dia.2016.0312
Ryan EA, Holland J, Stroulia E, Bazelli B, Babwik SA, Li H, et al. Improved A1C Levels in Type 1 Diabetes with Smartphone App Use. Can J Diabetes. 2017 Feb; 41(1):33-40. http://dx.doi.org/10.1016/j.jcjd.2016.06.001
Szypowski W, Kunecka K, Zduńczyk B, Piechowiak K, Dyczek M, Dąbrowa K, et al. Food exchange estimation by children with type 1 diabetes at summer camp. J Pediatr Endocrinol Metab. 2017; 30(1):71-76. http://dx.doi.org/10.1515/jpem-2016-0282.
Neinstein A, Wong J, Look H, Arbiter B, Quirk K, McCanne S, et al. A case study in open source innovation: developing the Tidepool Platform for interoperability in type 1 diabetes management. J Am Med Inform Assoc. 2016; 23(2):324-32. http://dx.doi.org/10.1093/jamia/ocv104
Esvant A, Lefebvre MA, Campillo-Gimenez B, Lannes M, Delamarre D, Guilhem I, et al. A Mobile Application Guiding Patients With Type 1 Diabetes Using Sensor-Augmented Insulin Pump Therapy. J Diabetes Sci Technol. 2016; 10(4):985-6. http://dx.doi.org/10.1177/1932296816633486
Froisland DH, Arsand E. Integrating visual dietary documentation in mobile-phone-based self-management application for adolescents with type 1 diabetes. J Diabetes Sci Technol. 2015; 9(3):541-8. http://dx.doi.org/10.1177/1932296815576956
Rossi MC, Nicolucci A, Pellegrini F, Bruttomesso D, Bartolo PD, Marelli G, et al. Interactive diary for diabetes: A useful and easy-to-use new telemedicine system to support the decision-making process in type 1 diabetes. Diabetes Technol Ther. 2009;11(1):19-24. http://dx.doi.org/10.1089/dia.2008.0020
Lloyd B, Groat D, Cook CB, Kaufman D, Grando A. iDECIDE: A Mobile Application for Insulin Dosing Using an Evidence Based Equation to Account for Patient Preferences. Stud Health Technol Inform. 2015; 216:93-7. https://pubmed.ncbi.nlm.nih.gov/26262017/
Veazie S, Winchell K, Gilbert J, Paynter R, Ivlev I, Eden KB, et al. Rapid Evidence Review of Mobile Applications for Self-management of Diabetes. J Gen Intern Med. 2018; 33(7): 1167-1176. http://dx.doi.org/10.1007/s11606-018-4410-1.
Castensoe-Seidenfaden P, Husted G, Tellmann G, Hommel E, Olsen B, Kensing F. Designing a self-management app for young people with diabetes type 1 - methodological challenges, experiences and recommendations. JMIR Mhealth Uhealth 2017;5(10):e124. http://dx.doi.org/10.2196/mhealth.8137
Kordonouri O, Riddell MC. Use of apps for physical activity in type 1 diabetes: current status and requirements for future development. Ther Adv Endocrinol Metab. 2019;10 (1): 1-7. http://dx.doi.org/10.1177/2042018819839298
Cui M, Wu X, Mao J, Wang X, Nie M. T2DM Self-Management via Smartphone Applications: A Systematic Review and Meta-Analysis. PLoS One. 2016; 11(11):e0166718. http://dx.doi.org/10.1371/journal.pone.0166718
AbdulAziz YH, Al-Sallami HS, Wiltshire E, Rayns J, Jinny Willis J , McClintock J, et al. Insulin pump initiation and education for children and adolescents – a qualitative study of current practice in New Zealand. J Diabetes Metab Disord. 2019; 18 (1): 59–64. https://doi.org/10.1007/s40200-019-00390-6
Alghadeer S, Aljuaydi K, Balkhi B, Alhossan A and Yazed Alruthia1. The attitude and basic knowledge of insulin pump therapy among healthcare providers. Biomed Res J. 2019; 30 (3): 446-451. https://doi.org/10.35841/biomedicalresearch.30-19-181
##plugins.facebook.comentarios##
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2023 Maria Girlane Sousa Albuquerque Brandão, Maria Aline Moreira Ximenes, Carla Regina de Sousa Teixeira, Vivian Saraiva Veras