Analítica de datos de aprendizaje (ADA) y gestión educativa

  • Jorge Alexánder Aristizabal F Universidad Santo Tomás Bogotá
Palabras clave: Analítica de datos de aprendizaje, gestión educativa, minería de datos educativos

Resumen

Este artículo surge como una derivación del marco teórico, metodológico y avances del proyecto de tesis doctoral del autor sobre minería de datos educativos en un aula presencial, teniendo como variables las actividades de enseñanza, el enganchamiento estudiantil y la evaluación del aprendizaje. La idea central se basa en el hecho de que las instituciones educativas cuentan con una gran variedad de datos e información provenientes de sistemas de información escolar, tales como resultados de evaluaciones internas o externas, asistencia a clases, nivel socioeconómico, esquemas de alimentación, llegadas tarde, desempeño año por año, entre otros, los cuales, de acuerdo con las tendencias mundiales, son insumos importantes para la toma de decisiones informadas. No obstante, muchas veces esta información queda acumulada o almacenada en algún lugar de la institución sin que se le dé uso efectivo a esta, o peor aún, la gran cantidad de información del día a día no se recopila o registra, perdiendo así un gran potencial para mejoras académicas. El presente trabajo tiene como objetivo presentar unos conceptos generales acerca de la analítica de datos en el contexto escolar y cómo este proceso puede contribuir a la gestión educativa, principalmente para la toma de decisiones informadas y el desarrollo de planes de acción.

Biografía del autor/a

Jorge Alexánder Aristizabal F, Universidad Santo Tomás Bogotá
Candidato a Doctor en Educación, Universidad Santo Tomás, Bogotá, Colombia. Magíster en Educación, Universidad Externado de Colombia. Magíster en Docencia de la Química, Universidad Pedagógica Nacional, Colombia. Licenciado en Química, Universidad Pedagógica Nacional.

Citas

Baker, B. M. (2007). A conceptual framework for making knowledge actionable through capital formation (Tesis de doctorado). University of Maryland University College. Recuperado de: http://gradworks.umi.com/32/54/3254328.html

Bernhardt, V. (1998). Multiple measures. California Association for Supervision and Curriculum Development. Recuperado de: http://nces.ed.gov/pubs2007/curriculum/ pdf/multiple_ measures.pdf

Bernhardt, V. (2009a). Measuring school process. Education for the future initiative . Recuperado de: http://eff.csuchico.edu/downloads/MeasuringProcesses.pdf

Bernhardt, V. (2009b). Data use: Data-driven decision making takes a big-picture view of the needs of teachers and students. Journal of Staff Development, 30 (1), pp 24-27. Recuperado de: http://eric.ed.gov/?id=EJ827537

Boudett, K. P., City, E. & Murnane, R. (2005). Data wise: A step-by-step guide to using assessment results to improve teaching and learning . Cambridge: Harvard Education Press.

Briones, G. (2002). Metodología de la investigación cuantitativa en las ciencias sociales. Recuperado de: https://www.contrasentido.net/wp-content/uploads/2007/08/modulo3. pdf

Brown, L. (2014). Improving student persistence with learning analytics tools and dashboards. (Tesis inédita de maestría). Athabasca University. Recuperado de: http://dtpr.lib.athabascau.ca/ action/download.php?filename=scis-07/open/LornaBrownEssay.pdf

Buckingham, S. (2012). Learning analytics . Recuperado de: http://iite.unesco.org/files/policy_ briefs/pdf/en/learning_analytics.pdf

Chaudhuri, S., Dayal, U. and Narasayya, V. (2011). An overview of business intelligence. Technology and Communications of the ACM , 54 (8), 88-98- Recuperado de: http://cacm.acm.org/ magazines/2011/8/114953-an-overview-of-business-intelligence-technology

Creswell, J. W. & Garrett, A. L. (2008). The “movement” of mixed methods research and the role of educators. South African Journal of Education , 28 (3), 321-333. Recuperado de: http://www. sajournalofeducation.co.za/index.php/saje /article/viewfile/176/114

Dawson, S., Heathcote, L. & Poole, G. (2010). Harnessing ICT potential: The adoption and analysis of ICT systems for enhancing the student learning experience. International Journal of Educational Management , 24 (2), 116-128. Recuperado de: http://www.emeraldinsight. com/doi/full/10.1108/09513541011020936

Doran, G. T. (1981). There’s a SMART way to write management’s goals and objectives. Management Review , 70 (11), 35-36. Recuperado de: http://connection.ebscohost.com/c/ articles/6043491/theres-s-m-a-r-t-way-write-managementss-goals-objectives

Duval, E. (2011). Attention please!: learning analytics for visualization and recommendation . (In Proceedings of the 1st International Conference on Learning Analytics and Knowledge LAK ‘11). Recuperado de: http://doi.acm.org/10.1145/2090116.2090118

Elias, T. (2011). Learning Analytics: Definitions, processes and potentials. Recuperado de: http:// learninganalytics.net/LearningAnalytics DefinitionsProcessesPotential.pdf

Goebel, M. & Gruenwald, L. (1999). A survey of data mining and knowledge discovery software tools. ACM SIGKDD Explorations Newsletter , 1 (1), 20-33. Recuperado de: http://kdd.org/ exploration_files/survey.pdf

Hamilton, L., Halverson, R., Jackson, S., Mandinach, E., Supovitz, J. & Wayman, J. (2009). Using student achievement data to support instructional decision making. Recuperado de: http:// ies.ed.gov/ncee/wwc/publications/practiceguides/

Heppen, J., Faria, A. M., Sawyer, K., Thomsen, K., Townsend, M., Kutner, M., Stachel, S. (2010). Using data to improve instruction in the great city schools: Key dimensions of practice. Recuperado de: http://www.cgcs.org/cms/lib/DC00001581/Centricity/Domain/87/Strand%202%20 Report%20-%20Key%20Dimensions%20of%20Data%20Use_122110.pdf

Hernández S., R., Fernández C., C. & Baptista L., P. (2010). Metodología de la Investigación . México: McGraw Hill. International Educational Data Mining Society. (s. f.). Minería de datos educativos. Recuperado de: http://www.educationaldatamining.org/

Mandinach E., B., Gummer E., S. & Muller R., D. (2011). The complexities of integrating data-driven decision making into professional preparation in schools of education: It’s harder than you think. Alexandria, VA, Portland, OR y Washington, DC: CNA Education, Education Northwest and WestEd.

Murray, J. (2013). Critical issues facing school leaders concerning data-informed decision- making. School Leadership & Management , 33 (2), 169-177. Recuperado de: http://files.eric. ed.gov/fulltext/EJ1038162.pdf

Papamitsiou, Z. & Economides, A. (2014). Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Educational Technology & Society , 17 (4), 49–64. Recuperado de: http://ifets.info/journals/17_4/4.pdf

Romero, C., Ventura, S., Pechenizkiy, M. & Baker, R. S. (Eds.). (2011). Handbook of educational data mining . Boca Ratón: CRC Press.

Salvador, F. (2014). Big Data: ¿La ruta o el destino? Tecnología y Crecimiento , 3. Recuperado de: http://www.ie.edu/fundacion_ie/Comun/Publicaciones /Publicaciones/Big%20Data%20 ESP%207.pdf

Wang, Y., Luo, L., Freedman, M. T. & Kung, S. Y. (2000). Probabilistic principal component subspaces: a hierarchical finite mixture model for data visualization. Neural Networks, IEEE Transactions . 11(3), 625-636. Recuperado de: http://www.princeton.edu/ ~kung/papers_ pdf/DNA/hierchical.pdf

Washington State School Directors’ Association. (2008). Data dashboards for school directors: Using data for acountability and student achievement. Recuperado de: http://wssda.org/ Resources/Publications/DataDashboardsforSchoolDirectors.aspx

Wilson, B. L., Miller, R., Rossman, G. (1985). Models for uses of data in school improvement from fast food to five-star restaurant. Philadephia. PA: Research for Better Schools, Inc.

Publicado
2016-07-01