Abstract
This article stems from the theoretical and methodological framework of the author´s doctoral thesis which researches Educational Data Mining (EDM) onsite in the classroom. The variables studied include teaching strategies, student engagement and evaluation of student learning. School information systems process vast quantities of information including, internal and external evaluations, student attendance, socioeconomic status, meal programs, tardiness, yearly performance, to name a few, all which significantly contribute to informed decision-making at schools.
Such information is often stockpiled and stored in obscure files somewhere within the school without ever making any effective use of it. Even worse, important information tends to be underrecorded, thereby jeopordazing any opportunities for academic improvement. The objective of this article is to introduce concepts associated with data analysis in a school context and its contribution to educational management which leads to informed decision-making and the development of action plans.
References
Baker, B. M. (2007). A conceptual framework for making knowledge actionable through capital formation (Tesis de doctorado). University of Maryland University College. Recuperado de: http://gradworks.umi.com/32/54/3254328.html
Bernhardt, V. (1998). Multiple measures. California Association for Supervision and Curriculum Development. Recuperado de: http://nces.ed.gov/pubs2007/curriculum/ pdf/multiple_ measures.pdf
Bernhardt, V. (2009a). Measuring school process. Education for the future initiative . Recuperado de: http://eff.csuchico.edu/downloads/MeasuringProcesses.pdf
Bernhardt, V. (2009b). Data use: Data-driven decision making takes a big-picture view of the needs of teachers and students. Journal of Staff Development, 30 (1), pp 24-27. Recuperado de: http://eric.ed.gov/?id=EJ827537
Boudett, K. P., City, E. & Murnane, R. (2005). Data wise: A step-by-step guide to using assessment results to improve teaching and learning . Cambridge: Harvard Education Press.
Briones, G. (2002). Metodología de la investigación cuantitativa en las ciencias sociales. Recuperado de: https://www.contrasentido.net/wp-content/uploads/2007/08/modulo3. pdf
Brown, L. (2014). Improving student persistence with learning analytics tools and dashboards. (Tesis inédita de maestría). Athabasca University. Recuperado de: http://dtpr.lib.athabascau.ca/ action/download.php?filename=scis-07/open/LornaBrownEssay.pdf
Buckingham, S. (2012). Learning analytics . Recuperado de: http://iite.unesco.org/files/policy_ briefs/pdf/en/learning_analytics.pdf
Chaudhuri, S., Dayal, U. and Narasayya, V. (2011). An overview of business intelligence. Technology and Communications of the ACM , 54 (8), 88-98- Recuperado de: http://cacm.acm.org/ magazines/2011/8/114953-an-overview-of-business-intelligence-technology
Creswell, J. W. & Garrett, A. L. (2008). The “movement” of mixed methods research and the role of educators. South African Journal of Education , 28 (3), 321-333. Recuperado de: http://www. sajournalofeducation.co.za/index.php/saje /article/viewfile/176/114
Dawson, S., Heathcote, L. & Poole, G. (2010). Harnessing ICT potential: The adoption and analysis of ICT systems for enhancing the student learning experience. International Journal of Educational Management , 24 (2), 116-128. Recuperado de: http://www.emeraldinsight. com/doi/full/10.1108/09513541011020936
Doran, G. T. (1981). There’s a SMART way to write management’s goals and objectives. Management Review , 70 (11), 35-36. Recuperado de: http://connection.ebscohost.com/c/ articles/6043491/theres-s-m-a-r-t-way-write-managementss-goals-objectives
Duval, E. (2011). Attention please!: learning analytics for visualization and recommendation . (In Proceedings of the 1st International Conference on Learning Analytics and Knowledge LAK ‘11). Recuperado de: http://doi.acm.org/10.1145/2090116.2090118
Elias, T. (2011). Learning Analytics: Definitions, processes and potentials. Recuperado de: http:// learninganalytics.net/LearningAnalytics DefinitionsProcessesPotential.pdf
Goebel, M. & Gruenwald, L. (1999). A survey of data mining and knowledge discovery software tools. ACM SIGKDD Explorations Newsletter , 1 (1), 20-33. Recuperado de: http://kdd.org/ exploration_files/survey.pdf
Hamilton, L., Halverson, R., Jackson, S., Mandinach, E., Supovitz, J. & Wayman, J. (2009). Using student achievement data to support instructional decision making. Recuperado de: http:// ies.ed.gov/ncee/wwc/publications/practiceguides/
Heppen, J., Faria, A. M., Sawyer, K., Thomsen, K., Townsend, M., Kutner, M., Stachel, S. (2010). Using data to improve instruction in the great city schools: Key dimensions of practice. Recuperado de: http://www.cgcs.org/cms/lib/DC00001581/Centricity/Domain/87/Strand%202%20 Report%20-%20Key%20Dimensions%20of%20Data%20Use_122110.pdf
Hernández S., R., Fernández C., C. & Baptista L., P. (2010). Metodología de la Investigación . México: McGraw Hill. International Educational Data Mining Society. (s. f.). Minería de datos educativos. Recuperado de: http://www.educationaldatamining.org/
Mandinach E., B., Gummer E., S. & Muller R., D. (2011). The complexities of integrating data-driven decision making into professional preparation in schools of education: It’s harder than you think. Alexandria, VA, Portland, OR y Washington, DC: CNA Education, Education Northwest and WestEd.
Murray, J. (2013). Critical issues facing school leaders concerning data-informed decision- making. School Leadership & Management , 33 (2), 169-177. Recuperado de: http://files.eric. ed.gov/fulltext/EJ1038162.pdf
Papamitsiou, Z. & Economides, A. (2014). Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Educational Technology & Society , 17 (4), 49–64. Recuperado de: http://ifets.info/journals/17_4/4.pdf
Romero, C., Ventura, S., Pechenizkiy, M. & Baker, R. S. (Eds.). (2011). Handbook of educational data mining . Boca Ratón: CRC Press.
Salvador, F. (2014). Big Data: ¿La ruta o el destino? Tecnología y Crecimiento , 3. Recuperado de: http://www.ie.edu/fundacion_ie/Comun/Publicaciones /Publicaciones/Big%20Data%20 ESP%207.pdf
Wang, Y., Luo, L., Freedman, M. T. & Kung, S. Y. (2000). Probabilistic principal component subspaces: a hierarchical finite mixture model for data visualization. Neural Networks, IEEE Transactions . 11(3), 625-636. Recuperado de: http://www.princeton.edu/ ~kung/papers_ pdf/DNA/hierchical.pdf
Washington State School Directors’ Association. (2008). Data dashboards for school directors: Using data for acountability and student achievement. Recuperado de: http://wssda.org/ Resources/Publications/DataDashboardsforSchoolDirectors.aspx
Wilson, B. L., Miller, R., Rossman, G. (1985). Models for uses of data in school improvement from fast food to five-star restaurant. Philadephia. PA: Research for Better Schools, Inc.