Resumen
El propósito de este trabajo es construir códigos adaptativos del método de Linealización Local para Ecuaciones Diferenciales Ordinarias (EDO) y analizar su comportamiento numérico. Además, se estudia el efecto que sobre las propiedades de los códigos produce la variación en la precisión de las aproximaciones de Padé utilizadas.
Citas
Beyn, W.J. (1987) “On the numerical approximation of phase portraits near stationary points”, SIAM J. Numer. Anal. 24: 1095–1113.
Carbonell, F.; Jimenez, J.C.; Biscay, R.J. (2006) “Weak local linear discretizations for stochastic differential equations: convergence and numerical schemes”, J. Comput. Appl. Math. 197: 578–596.
Carbonell, F.; Jimenez, J.C.; Biscay, R.; de la Cruz, H. (2005) “The Local Linearization method for numerical integration of random differential equations”, BIT Numerical Mathematics 45: 1–14.
Cartwright, J.H.E.; Piro, O. (1992) “The dynamics of Runge-Kutta methods”, Int. J. Bifurc. Chaos 2: 427–449.
Cox, S.M.; Matthews, P.C. (2002) “Exponential time differencing for stiff systems”, J. Comput. Phys. 176: 430–455.
de la Cruz, H.; Biscay, R.J.; Carbonell, F.; Jimenez, J.C.; Ozaki, T. (2006) “Local Linearization-Runge Kutta (LLRK) methods for solving ordinary differential equations”, in: Lecture Notes in Computer Sciences 3991, Springer-Verlag, Berlin: 132–139.
de la Cruz, H.; Biscay, R.J.; Carbonell, F.; Ozaki, T.; Jimenez, J.C. (2007) A higher order Local Linearization method for solving ordinary differential equations, Appl. Math. Comput. 185: 197–212.
de la Cruz, H.; Biscay, R.J.; Jimenez, J.C.; Carbonell, F.; Ozaki, T. (2010) “High order local linearization methods: an approach for constructing A-stable high order explicit schemes for stochastic differential equations with additive noise”, BIT Numerical Mathematics 50: 509–539.
de la Cruz H., Biscay R.J., Jimenez J.C. and Carbonell F., Local Linearization-Runge-Kutta methods: A class of A-stable explicit integrators for dynamical systems, Math. Comput. Modell., 57 (2013) 720–740.
Hairer, E.; Norsett, S.P.; Wanner, G. (1993) Solving Ordinary Differential Equations I, 2nd ed. Springer-Verlag, Berlin.
Hairer, E.; Wanner, G. (1996) Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 3th ed. Springer-Verlag, Berlin.
Hochbruck, M.; Ostermann, A.; Schweitzer, J. (2009) “Exponential Rosenbrock type methods”, SIAM J. Numer. Anal. 47: 786–803.
Hochbruck, M.; Ostermann, A. (2010) “Exponential integrators”, Acta Numer. 19: 209–286.
Iserles, A. (1990) “Stability and dynamics of numerical methods for non-linear ordinary differential equations”, IMA J. Numer. Anal. 10: 1–30.
Jimenez, J.C.; Biscay, R.; Mora, C.; Rodriguez, L.M. (2002) “Dynamic properties of the Local Linearization method for initial-value problems”, Appl. Math.Comput. 126: 63–81.
Jimenez, J.C.; Carbonell, F. (2005) “Rate of convergence of local linearization schemes for initial-value problems”, Appl. Math. Comput. 171: 1282–1295.
Jimenez, J.C.; Pedroso, L.; Carbonell, F.; Hernandez, V. (2006) “Local linearization method for numerical integration of delay differential equations", SIAM J. Numer. Analysis 44: 2584–2609.
Jimenez, J.C.; Sotolongo, A.; Sanchez-Bornot, J.M. (2012) Locally Linearized Runge Kutta method of Dormand and Prince, in: http://arxiv.org/abs/1209.1415.pdf
Prenter P.M. (1975) Splines and Variational Methods. John Wiley & Sons, New York.
Rahunanthana, A.; Stanescu, D. (2010) “High-order W-methods”, Journal of Computational and Applied Mathematics 233: 1798–1811.
Shampine, L.F.; Reichelt, M.W. (1997) “The MATLAB ODE Suite” SIAM Journal on Scientific Computing 18: 1–22.
Skufca, J.D. (2004) “Analysis still matters: a surprising instance of failure of Runge-Kutta-Felberg ODE solvers”, SIAM Review 46: 729–737
Stewart, I. (1992) “Numerical methods: Warning-handle with care!”, Nature 355: 16–17.
Van Loan, C.F.; Moler, C. (2003) “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later”, SIAM Review 45: 3–49.