Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Construcción y estudio de códigos adaptativos de linealización local para ecuaciones diferenciales ordinarias
PDF

Cómo citar

Sotolongo Aguiar, A., & Jiménez Sobrino, J. C. (2014). Construcción y estudio de códigos adaptativos de linealización local para ecuaciones diferenciales ordinarias. Revista De Matemática: Teoría Y Aplicaciones, 21(1), 21–53. https://doi.org/10.15517/rmta.v21i1.14136

Resumen

El propósito de este trabajo es construir códigos adaptativos del método de Linealización Local para Ecuaciones Diferenciales Ordinarias (EDO) y analizar su comportamiento numérico. Además, se estudia el efecto que sobre las propiedades de los códigos produce la variación en la precisión de las aproximaciones de Padé utilizadas.

https://doi.org/10.15517/rmta.v21i1.14136
PDF

Citas

Beyn, W.J. (1987) “On the numerical approximation of phase portraits near stationary points”, SIAM J. Numer. Anal. 24: 1095–1113.

Carbonell, F.; Jimenez, J.C.; Biscay, R.J. (2006) “Weak local linear discretizations for stochastic differential equations: convergence and numerical schemes”, J. Comput. Appl. Math. 197: 578–596.

Carbonell, F.; Jimenez, J.C.; Biscay, R.; de la Cruz, H. (2005) “The Local Linearization method for numerical integration of random differential equations”, BIT Numerical Mathematics 45: 1–14.

Cartwright, J.H.E.; Piro, O. (1992) “The dynamics of Runge-Kutta methods”, Int. J. Bifurc. Chaos 2: 427–449.

Cox, S.M.; Matthews, P.C. (2002) “Exponential time differencing for stiff systems”, J. Comput. Phys. 176: 430–455.

de la Cruz, H.; Biscay, R.J.; Carbonell, F.; Jimenez, J.C.; Ozaki, T. (2006) “Local Linearization-Runge Kutta (LLRK) methods for solving ordinary differential equations”, in: Lecture Notes in Computer Sciences 3991, Springer-Verlag, Berlin: 132–139.

de la Cruz, H.; Biscay, R.J.; Carbonell, F.; Ozaki, T.; Jimenez, J.C. (2007) A higher order Local Linearization method for solving ordinary differential equations, Appl. Math. Comput. 185: 197–212.

de la Cruz, H.; Biscay, R.J.; Jimenez, J.C.; Carbonell, F.; Ozaki, T. (2010) “High order local linearization methods: an approach for constructing A-stable high order explicit schemes for stochastic differential equations with additive noise”, BIT Numerical Mathematics 50: 509–539.

de la Cruz H., Biscay R.J., Jimenez J.C. and Carbonell F., Local Linearization-Runge-Kutta methods: A class of A-stable explicit integrators for dynamical systems, Math. Comput. Modell., 57 (2013) 720–740.

Hairer, E.; Norsett, S.P.; Wanner, G. (1993) Solving Ordinary Differential Equations I, 2nd ed. Springer-Verlag, Berlin.

Hairer, E.; Wanner, G. (1996) Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 3th ed. Springer-Verlag, Berlin.

Hochbruck, M.; Ostermann, A.; Schweitzer, J. (2009) “Exponential Rosenbrock type methods”, SIAM J. Numer. Anal. 47: 786–803.

Hochbruck, M.; Ostermann, A. (2010) “Exponential integrators”, Acta Numer. 19: 209–286.

Iserles, A. (1990) “Stability and dynamics of numerical methods for non-linear ordinary differential equations”, IMA J. Numer. Anal. 10: 1–30.

Jimenez, J.C.; Biscay, R.; Mora, C.; Rodriguez, L.M. (2002) “Dynamic properties of the Local Linearization method for initial-value problems”, Appl. Math.Comput. 126: 63–81.

Jimenez, J.C.; Carbonell, F. (2005) “Rate of convergence of local linearization schemes for initial-value problems”, Appl. Math. Comput. 171: 1282–1295.

Jimenez, J.C.; Pedroso, L.; Carbonell, F.; Hernandez, V. (2006) “Local linearization method for numerical integration of delay differential equations", SIAM J. Numer. Analysis 44: 2584–2609.

Jimenez, J.C.; Sotolongo, A.; Sanchez-Bornot, J.M. (2012) Locally Linearized Runge Kutta method of Dormand and Prince, in: http://arxiv.org/abs/1209.1415.pdf

Prenter P.M. (1975) Splines and Variational Methods. John Wiley & Sons, New York.

Rahunanthana, A.; Stanescu, D. (2010) “High-order W-methods”, Journal of Computational and Applied Mathematics 233: 1798–1811.

Shampine, L.F.; Reichelt, M.W. (1997) “The MATLAB ODE Suite” SIAM Journal on Scientific Computing 18: 1–22.

Skufca, J.D. (2004) “Analysis still matters: a surprising instance of failure of Runge-Kutta-Felberg ODE solvers”, SIAM Review 46: 729–737

Stewart, I. (1992) “Numerical methods: Warning-handle with care!”, Nature 355: 16–17.

Van Loan, C.F.; Moler, C. (2003) “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later”, SIAM Review 45: 3–49.

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.