Resumen

La información de Kullback-Leibler permite caracterizar una familia de distribuciones que denominamos Kullback-Liebler-Simétricas de las cuales tenemos distribuciones que son funciones de una distancia que bajo restricciones genera la igualdad en la relación de Jensen mostrados por [1], las que denominamos Jensen-Igual. Por otra parte, [5] y [7] presentan que la teoría de grafos permite definir un espacio medible y por tanto nuevas distancias, en particular la caracterizada por [2] denominada distancia Geodésica. La interacción de las dos ideas permite inducir una distribución que denominaremos Geodésica, la cual bajo técnicas de la teoría de grafos, como el centro y el radio de un grafo, permite desarrollar metodologías de optimización en función de las probabilidades de atendimiento. Obtenemos muchas áreas de aplicación y muchas adaptaciones, en las cuales, por ejemplo, aplicamos en un problema de estadística espacial. 

 
Palabras clave: información Kullback-Leibler, teoría de grafos, distancia geodésica, distribución geodésica