Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Geodesic distribution in graph theory: Kullback-Leibler-Symmetric
PDF

Keywords

Kullback-Leibler information
graph theory
geodesic distance
geodesic distribution
información Kullback-Leibler
teoría de grafos
distancia geodésica
distribución geodésica

How to Cite

González, J. A., & Cascone, M. H. (2014). Geodesic distribution in graph theory: Kullback-Leibler-Symmetric. Revista De Matemática: Teoría Y Aplicaciones, 21(2), 249–260. https://doi.org/10.15517/rmta.v21i2.15185

Abstract

Kullback-Leibler information allow us to characterize a family of dis- tributions denominated Kullback-Leibler-Symmetric, which are distance functions and, under some restrictions, generate the Jensen’s equality shown by [1], in this paper denominated Jensen-Equal. On the other hand, [5] and [7] showed that graph theory gives conditions to define a new mea- surable space and, therefore, new distances, in particular, the distance characterized by [2], denominated Geodesic Distance. The interaction of these ideas allow us to define a new distribution, denominated Geodesic Distri- bution which, under graph theory as center and radius of a graph, we can to develop optimization methodologies based in probabilities of attendance. We obtain many applications and the proposal method is very adaptive. To illustrate, we apply this distribution in spatial statistics. 

https://doi.org/10.15517/rmta.v21i2.15185
PDF

References

Beckenbach, E. (1937) “Generalized convex functions”, Bulletin of American Mathematical Society, 43(6): 363–371.

Bouttier, J.; Di Francesco, P; Guitter, E. (2003) “Geodesic distance in planar graphs”, Nuclear Physics B 663(3): 535–567.

Chartrand, G.; Oellermann, O.R. (1993) Applied and Algorithmic Graph Theory. McGraw-Hill, New York.

Chartrand, G.; Lesniak, L. (1996) Graphs and Digraphs. Chapman & Hall/CRC, New York.

Chung, F.; Horn, P.; Lu, L. (2012) “Diameter of random spanning trees in a given graph”, Journal of Graph Theory 69(3): 223–240.

Lachos, V.H.; Bandyopadhyay, D.; Dey, D.K. (2011) “Linear and non-linear mixed-effects models for censored HIV viral loads using normal/independent distributions”, Biometrics 67(4): 1594–1604.

Montenegro, E.; Cabrera, E. (2001) “Attractors points in the autosubstitution”, Proyecciones (Antofagasta) 20(2): 193–204.

Montenegro, E.; González, J.; Cabrera, E.; Nettle A.; Robres, R. (2010) “Graphs r-polar spherical realization”, Proyecciones (Antofagasta) 29(1): 31–39.

Schervish, M.J. (1995) Theory of Statistics. Springer, New York.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2014 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.