Abstract
Kullback-Leibler information allow us to characterize a family of dis- tributions denominated Kullback-Leibler-Symmetric, which are distance functions and, under some restrictions, generate the Jensen’s equality shown by [1], in this paper denominated Jensen-Equal. On the other hand, [5] and [7] showed that graph theory gives conditions to define a new mea- surable space and, therefore, new distances, in particular, the distance characterized by [2], denominated Geodesic Distance. The interaction of these ideas allow us to define a new distribution, denominated Geodesic Distri- bution which, under graph theory as center and radius of a graph, we can to develop optimization methodologies based in probabilities of attendance. We obtain many applications and the proposal method is very adaptive. To illustrate, we apply this distribution in spatial statistics.
References
Beckenbach, E. (1937) “Generalized convex functions”, Bulletin of American Mathematical Society, 43(6): 363–371.
Bouttier, J.; Di Francesco, P; Guitter, E. (2003) “Geodesic distance in planar graphs”, Nuclear Physics B 663(3): 535–567.
Chartrand, G.; Oellermann, O.R. (1993) Applied and Algorithmic Graph Theory. McGraw-Hill, New York.
Chartrand, G.; Lesniak, L. (1996) Graphs and Digraphs. Chapman & Hall/CRC, New York.
Chung, F.; Horn, P.; Lu, L. (2012) “Diameter of random spanning trees in a given graph”, Journal of Graph Theory 69(3): 223–240.
Lachos, V.H.; Bandyopadhyay, D.; Dey, D.K. (2011) “Linear and non-linear mixed-effects models for censored HIV viral loads using normal/independent distributions”, Biometrics 67(4): 1594–1604.
Montenegro, E.; Cabrera, E. (2001) “Attractors points in the autosubstitution”, Proyecciones (Antofagasta) 20(2): 193–204.
Montenegro, E.; González, J.; Cabrera, E.; Nettle A.; Robres, R. (2010) “Graphs r-polar spherical realization”, Proyecciones (Antofagasta) 29(1): 31–39.
Schervish, M.J. (1995) Theory of Statistics. Springer, New York.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2014 Revista de Matemática: Teoría y Aplicaciones