Resumen

Se integra sobre la medida de Hausdorff y se obtiene el exponente Hölder como la codimensión DT −D del fractal, en el espacio Euclidiano en que se encuentra inmerso. Ésto ha resultado de la aplicación de la concepción de integral de Daniell, que posibilita integrar funciones de Lipschitz y de Hölder sobre las medidas de Baire y también, de definir el espacio de fractales con la métrica de Hutchinson.


 Se obtiene la potencia para el modelo [potenciado]* de los semivariogramas de procesos estacionarios. Se aplica a los niveles de los mantos freáticos del Valle del Carrizo, Sinaloa, México, y se crean los semivariogramas experimentales y el de ajuste con un modelo potencial, encontrándose que su potencia es β = 1,5. Se obtiene también, que la dimensión fractal de estos mantos es de 2,25.

Palabras clave: Fractales, Hölder, codimensión, similaridad, semivariograma, freático