Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Aproximación fractal para semivariogramas freáticos
PDF (Español (España))

Keywords

fractals
Hölder
codimension
similarity
semivariogram
groundwater
Fractales
Hölder
codimensión
similaridad
semivariograma
freático

How to Cite

Mercado E., J. R., Lázaro Ch., P., Brambila P., F., & Fuentes R., C. (2002). Aproximación fractal para semivariogramas freáticos. Revista De Matemática: Teoría Y Aplicaciones, 9(2), 85–100. https://doi.org/10.15517/rmta.v9i2.219

Abstract

Hausdorff’s measure is integrated upon, and Hölder’s exponent is obtained as the codimension DT ? D of the fractal in the Euclidian space in which it is immersed. This has resulted from the application of Daniell’s integral conception, which makes it possible to integrate Lipschitz’s and Hölder’s functions into Baire’s measures and to define fractal space with Hutchinson’s metric.

The power for the potentiated model of the semivariograms of stationary processes is obtained. It is applied to the levels of the phreatic strata of Valle del Carrizo, Sinaloa, Mexico, and the experimental semivariograms, and those of the adjustment with a potential model are created, with the finding that its power is = 1,5. It is also found that the fractal dimension of these strata is 2,25.

https://doi.org/10.15517/rmta.v9i2.219
PDF (Español (España))

References

Barnsley, M.F. (1993) Fractals Everywhere. Academic Press Professional, Boston.

Colton, D.; Kress, R. (1983) Integrals Equation Methods in Scattering Theory. John Wiley & Sons, New York.

Daniell, P. J. (1917-1918) “A general form of integral”, Ann. Math. 2(19): 279–294.

Falconer, K. (1990) Fractal Geometry. John Wiley & Sons, New York.

Journel, A.G.; Huijbregts, Ch.J. (1978) Mining Geostatistics, Academic Press, New York.

Kyung, Ch.; Kang, S. (1997) “A practical estimation method for groundwater level elevations”, J. Korean Math. Soc. 34(4): 927–947.

Lasota, A.; Myjak, J. (1998) “Semifractals on Polish spaces”, Bull. of the Polish Acad. of Scie. Math. 46(2): 179–196.

Luenberger, D.G. (1969) Optimization by Vector Space Methods J. Wiley & Sons, New York.

Mandelbrot, B. (1983) The Fractal Geometry of Nature. W.H. Freeman and Company, New York.

Mercado, J. R. (1998) El Principio de Causalidad Eficiente en el Análisis Funcional, en preparation.

Oliver, M.A.; Webster, R. (1991) “How geostatiscs can help you”, Soil Use and Management 7(4).

Queneau, R. (1990) El lugar de las matemáticas en la clasificación de las ciencias. Introduccción y Selección de Miguel Lara Aparicio, Lecturas Universitarias 7, Antología de Matemáticas, UNAM,.

Rudin, W. (1979) Análisis Real y Complejo. Alhambra, Madrid.

Shilov, G. E.; Gurevich, B. L. (1977) Integral, Measure & Derivative: A Unified Approach. Dover, Londres.

Comments

Downloads

Download data is not yet available.