Resumen
El artículo presenta una adaptación del algoritmo de Búsqueda Dispersa Multiobjetivo para la solucionar problemas de optimización vectorial no lineales continuos, empleando un enfoque de Búsqueda Tabú como un método generador de soluciones diversas. Memoria de Frequencias y otros mecanismos de escapes son utilizados para diversificar la búsqueda. La relación Pareto es aplicada para designar un subconjunto de las mejores soluciones generadas a ser soluciones de referencias. Una función de selección denominada selección de Kramer se utiliza para dividir al conjunto de referencia en dos subconjuntos. La distancia Euclideana es usada como una medida de disimilaridad a modo de hallar soluciones diversas que complementen los subconjuntos de soluciones potencialmente Pareto de alta calidad a ser combinadas. Como método de conbinación usamos la combinación convexa. El desempeño de este enfoque es evaluado con diferentes problemas de pruebas tomados de la literatura.
Citas
Battiti, R.; Tecchiolli, G. (1994) “The reactive tabu search”, ORSA Journal on Computing 6(2): 126–140.
Battiti, R. (1996) “Reactive search: toward self-tuning heuristics”, in: Modern Heuristic Search Methods, chapter 4, V.J. Rayward-Smith, I.H. Osman, C.R. Reeves & G.D. Smith (Eds.) John Wiley and Sons: 61-83.
Beausoleil, R. (2001) “Multiple criteria scatter search”, Proceedings of 4th Metaheuristics International Conference, Jorge Pinho de Sousa (Ed.), Porto, Portugal: 534–539
Binh, T.T.; Korn, U. (1996) “An evolution strategy for the multiobjective optimization”, Institute for Automation, Magdeburg.
Coello Coello, C.A. (1999) “A comprensive survey of evolutionary-based multiobjective optimization techniques”, Knowledge and Information Systems 1(3): 269–308.
Cvetkovic, D.; Parmee, I.C. (1999) “Use of preference for GA-based multi-objective optimization”, PEDC, University of Plymouth.
Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. (2001) “Scalable test problems for evolutionary multi-objective optimization”, TIK-Tecnical Report No. 112.
Glover, F. (1989) “Tabu search”, part I, ORSA Journal of Computing 1(3): 190–206.
Glover, F. (1993) “Tabu thresholding: improved search by nonmonotonic trayectories”, ORSA Journal on Computing.
Glover, F.; Laguna, M. (1993) “Modern heuristic techniques for combinatorial problems”, John Wiley & Sons, Inc., chapter 3: 70–147.
Glover, F. (1994) “Tabu Search for nonlinear and parametric optimization (with links to genetic algorithms)”, Discrete Applied Mathematics 40: 231–255.
Glover, F. (1998) “A template for scatter search and path relinking”, in: Artificial Evolution, Lecture Notes in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer & D. Snyers (Eds), Springer: 13–54.
Glover, F. (1999) “Scatter search and path relinking”, in: New Methods in Optimization, D. Corne, M. Dorigo & F. Glover (Eds.), McGraw-Hill.
Glover, F.; Laguna, M.; Martí, R. (s.f.) “Scatter search tutorial for a class of non-linear optimization problem on bounded variables”.
Grignon, P.; Fadel, G.M. (1999) “Multiobjective optimization by iterative genetic algorithm”, Proceedings of DETC 99, ASME Design Engineering Technical Conferences, Las Vegas, Nevada.
Horn, J.; Nafpliotis, N.; Goldberg, D.E. (1994) “A niched Pareto genetic algorithm for multiobjective optimization”, ICEC’94, IEEE: 82–87.
Keeney, R.L.; Raiffa H. (1976) Decision with Multiple Objectives: Preference and Value Tradeoffs. Wiley, New York.
Knowles, J.; Corne, D. (1999) “The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimization”, University of Reading, UK.
Makarov, I. M.; Vinogradskaia, T. M; Rubinski, A.A; Sokolov. V. B. (1982) Choice Theory and Decision Making. Nauka, Moscow (in Russian).
Molyneaux, A. K.; Leyland, G.B.; Favrat, D. (2001) “A new clustering evolutionary multi-objective optimisation technique”, Proceeding ISAS2001, Evolutionary Computation and Probabilistic Graphical Models, Havana, Cuba: 41–43.
Schaffer, J.D. (s.f.) Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. Unpublished doctoral dissertation, Vanderbilt University.
Sen, P; Yang, J.B. (1998) Multiple Criteria Decision Support in Engineering Design. Springer-Verlag.
Vol’ski V. I. (1982) “Application of the Kramer method to identifying part of a Pareto set in multi-criteria optimization”, Automation and Remote Control 12 (in Russian): 111–119.
“Genetic algorithms with gender for multi-function optimization”, EPCC-SS92-01.