Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Bounded Variables nonlinear Multiple Criteria Optimization using Scatter search
PDF (Español (España))

Keywords

Tabu Search
Scatter Search
Nonlinear Optimization
Búsqueda Tabú
Búsqueda Dispersa
Optimización No Lineal

How to Cite

Beausoleil, R. P. (2004). Bounded Variables nonlinear Multiple Criteria Optimization using Scatter search. Revista De Matemática: Teoría Y Aplicaciones, 11(1), 17–40. https://doi.org/10.15517/rmta.v11i1.235

Abstract

This paper introduces an adaptation of multiple criteria scatter search to deal with nonlinear continuous vector optimization problems on bounded variables, applying Tabu Search approach as diversification generator method. Frequency memory and another escape mechanism are used to diversify the search. A relation Pareto is apply in order to designate a subset of the best generated solutions to be reference solutions. A choice function called Kramer Selection is used to divide the reference solution in two subsets. The Euclidean distance is used as a measure of dissimilarity in order to find diverse solutions to complement the subsets of high quality current Pareto solutions to be combined. Convex combination is used as a combined method. The performance of this approach is evaluated on several test problems taken from the literature.

https://doi.org/10.15517/rmta.v11i1.235
PDF (Español (España))

References

Battiti, R.; Tecchiolli, G. (1994) “The reactive tabu search”, ORSA Journal on Computing 6(2): 126–140.

Battiti, R. (1996) “Reactive search: toward self-tuning heuristics”, in: Modern Heuristic Search Methods, chapter 4, V.J. Rayward-Smith, I.H. Osman, C.R. Reeves & G.D. Smith (Eds.) John Wiley and Sons: 61-83.

Beausoleil, R. (2001) “Multiple criteria scatter search”, Proceedings of 4th Metaheuristics International Conference, Jorge Pinho de Sousa (Ed.), Porto, Portugal: 534–539

Binh, T.T.; Korn, U. (1996) “An evolution strategy for the multiobjective optimization”, Institute for Automation, Magdeburg.

Coello Coello, C.A. (1999) “A comprensive survey of evolutionary-based multiobjective optimization techniques”, Knowledge and Information Systems 1(3): 269–308.

Cvetkovic, D.; Parmee, I.C. (1999) “Use of preference for GA-based multi-objective optimization”, PEDC, University of Plymouth.

Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. (2001) “Scalable test problems for evolutionary multi-objective optimization”, TIK-Tecnical Report No. 112.

Glover, F. (1989) “Tabu search”, part I, ORSA Journal of Computing 1(3): 190–206.

Glover, F. (1993) “Tabu thresholding: improved search by nonmonotonic trayectories”, ORSA Journal on Computing.

Glover, F.; Laguna, M. (1993) “Modern heuristic techniques for combinatorial problems”, John Wiley & Sons, Inc., chapter 3: 70–147.

Glover, F. (1994) “Tabu Search for nonlinear and parametric optimization (with links to genetic algorithms)”, Discrete Applied Mathematics 40: 231–255.

Glover, F. (1998) “A template for scatter search and path relinking”, in: Artificial Evolution, Lecture Notes in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer & D. Snyers (Eds), Springer: 13–54.

Glover, F. (1999) “Scatter search and path relinking”, in: New Methods in Optimization, D. Corne, M. Dorigo & F. Glover (Eds.), McGraw-Hill.

Glover, F.; Laguna, M.; Martí, R. (s.f.) “Scatter search tutorial for a class of non-linear optimization problem on bounded variables”.

Grignon, P.; Fadel, G.M. (1999) “Multiobjective optimization by iterative genetic algorithm”, Proceedings of DETC 99, ASME Design Engineering Technical Conferences, Las Vegas, Nevada.

Horn, J.; Nafpliotis, N.; Goldberg, D.E. (1994) “A niched Pareto genetic algorithm for multiobjective optimization”, ICEC’94, IEEE: 82–87.

Keeney, R.L.; Raiffa H. (1976) Decision with Multiple Objectives: Preference and Value Tradeoffs. Wiley, New York.

Knowles, J.; Corne, D. (1999) “The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimization”, University of Reading, UK.

Makarov, I. M.; Vinogradskaia, T. M; Rubinski, A.A; Sokolov. V. B. (1982) Choice Theory and Decision Making. Nauka, Moscow (in Russian).

Molyneaux, A. K.; Leyland, G.B.; Favrat, D. (2001) “A new clustering evolutionary multi-objective optimisation technique”, Proceeding ISAS2001, Evolutionary Computation and Probabilistic Graphical Models, Havana, Cuba: 41–43.

Schaffer, J.D. (s.f.) Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. Unpublished doctoral dissertation, Vanderbilt University.

Sen, P; Yang, J.B. (1998) Multiple Criteria Decision Support in Engineering Design. Springer-Verlag.

Vol’ski V. I. (1982) “Application of the Kramer method to identifying part of a Pareto set in multi-criteria optimization”, Automation and Remote Control 12 (in Russian): 111–119.

“Genetic algorithms with gender for multi-function optimization”, EPCC-SS92-01.

Comments

Downloads

Download data is not yet available.