Resumen
En este artículo se hace un análisis de la bifurcación de Hopf del sistema tridimensional tipo Lorenz introducido por Xianyi Li y Qianjun Ou (2011), este análisis consiste en identificar una región de parámetros del sistema donde la bifurcación de Hopf es no degenerada y supercrítica, aspecto que no es abordado en el artículo de Xianyi Li y Qianjun Ou. Para lograr este objetivo se utiliza el Teorema de la Variedad Central y el Teorema de Hopf. Además, para ilustrar los resultados, se muestran gráficas de algunas trayectorias del sistema, las cuales fueron obtenidas mediante simulación numérica.
Citas
Algaba, A.; Domínguez, M.; Merino, M.; Rodríguez, A.L. (2015) “Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems", Nonlinear Dyn. 79(1): 885–902.
Algaba, A.; Fernández-Sánchez, F.; Merino, M.; Rodríguez, A.L. (2014) “Centers on center manifolds in the Lorenz, Chen and Lü systems", Commun. Nonlinear Sciences Numerical Simulation. 19(4): 772–775.
Algaba, A.; Fernández-Sánchez, F.; Merino, M.; Rodríguez, A.L. (2013) “The Lü systems is a particular case of the Lorenz system", Physical Letter A. 377(39): 2771–2776.
Castellanos, V.; Blé, G.; Llibre, J. (2016) “Existence of limit cicles in a tritrophic food chain model with holling functional responses of type I and II", Mathematical Methods in the Applied Sciences 39(1): 1–2.
Chen, C.-T. (1994) System and Signal Analysis. Oxford University Press, New York.
Chen, G.; Lü, J. (2003) “Dynamics of the Lorenz family: analysis, control and synchronization", Chinese Science Press, Beijing 00(1): 0–2.
Chen, G.; Lü, J.; Cheng, D. (2004) “A new chaotic system and beyond: The generalized Lorenz-like system", International Journal of Bifurcation and Chaos 14(5): 1507–1537.
Chen, G.; Oi, G. (2005) “Analysis of a new chaotic system", Physical A: Statistical Mechanics and Its Applications 352(2): 295–308.
Dutta, T.K.; Prajapati, P.; Haloi, S. (2016) “Supercritical and subcritical hopf bifurcations in non linear maps", International Journal of Innovative Research in Technology & Science 4(2): 14–20.
Guckenheimer, J.; Holemes, P. (1990) “Nonlinear oscillations dynamical systems and bifurcations of vectors fields”, Ithaca, Fall.
Kuznetsov, Y. A. (2004) Elements of Applied Bifurcation Theory, third edition. Springer-Verlag, New York.
Li, H.; Wang, M. (2013) “Hopf bifurcation analysis in a Lorenz-type systems", Nonlinear Dynamical 71(1): 235–240.
Li, X.; Ou, Q. (2011) “Dynamical properties and simulation of a new Lorenz-like chaotic system", Nonlinear Dynamical 65(3): 255–270.
Liao, X.; Wang, L.; Yu, P. (2007) Stability of Dynamical Systems. London, Canada.
Lorenz, E. (1963) “Deterministic nonperiodic flow", J. Atmos. Sci. 20(2): 130–141.
Pehlivan, I.; Uyaroglu, Y. (2010) “A new chaotic attractor from general Lorenz system family and its electronic experimental implementation", Turk J. Elec. Eng. & Comp. Sci. 18(2): 171–184.
Perko, L. (2000) Differential Equations and Dynamical Systems, third edition. Springer-Verlag, New York.
Pyragas, K. (2006) “Delayed feedback control of chaos", Phil. Trans. R. soc. A. 364(1846): 2309–2334.
Soon Tee, L.; Salleh, Z. (2013) “Dynamical analysis of a modified Lorenz system", Hindawwi Publishing Corporation Journal of Mathematics 2013(1): 1–8.
Sotomayor, J.; Melo, L.; Braga, D. (2006) Stability and Hopf Bifurcation in the Watt Governor Systems. Cornell University Library, orXiv: Matemáticas/0604177
Tian, Y.-P. (2012) Frequency-Domain Analysis and Desing of Distributed Control Systems. Wiley-IEEE Press.
Yan, Z. (2007) “Hopf bifurcation in the Lorenz-type chaotic system", Chaos, Solitons & Fractals 31(5): 1135–1142.
Yu, P.; Lü, J. (2010) “Bifurcation control for a class of Lorenz-like systems", International Journal of Bifurcation and Chaos 21(9): 2647–2664.