Abstract
In this paper, we analyze Hopf Bifurcation of the three-dimensional Lorenz-like system introduced by Xianyi Li and Qianjun Ou (2011), this analysis consists of identifying a parameter region, in which the nondegenerate and supercritical Hopf bifurcation occurs, situation that is not discussed by Xianyi Li and Qianjun Ou. To achieve this purpose, we use the Center Manifold Theorem and the Hopf Theorem. In addition, to illustrate the results, the graphics of some trayectories of the system are shown, which were obtained via numerical simulations.
References
Algaba, A.; Domínguez, M.; Merino, M.; Rodríguez, A.L. (2015) “Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems", Nonlinear Dyn. 79(1): 885–902.
Algaba, A.; Fernández-Sánchez, F.; Merino, M.; Rodríguez, A.L. (2014) “Centers on center manifolds in the Lorenz, Chen and Lü systems", Commun. Nonlinear Sciences Numerical Simulation. 19(4): 772–775.
Algaba, A.; Fernández-Sánchez, F.; Merino, M.; Rodríguez, A.L. (2013) “The Lü systems is a particular case of the Lorenz system", Physical Letter A. 377(39): 2771–2776.
Castellanos, V.; Blé, G.; Llibre, J. (2016) “Existence of limit cicles in a tritrophic food chain model with holling functional responses of type I and II", Mathematical Methods in the Applied Sciences 39(1): 1–2.
Chen, C.-T. (1994) System and Signal Analysis. Oxford University Press, New York.
Chen, G.; Lü, J. (2003) “Dynamics of the Lorenz family: analysis, control and synchronization", Chinese Science Press, Beijing 00(1): 0–2.
Chen, G.; Lü, J.; Cheng, D. (2004) “A new chaotic system and beyond: The generalized Lorenz-like system", International Journal of Bifurcation and Chaos 14(5): 1507–1537.
Chen, G.; Oi, G. (2005) “Analysis of a new chaotic system", Physical A: Statistical Mechanics and Its Applications 352(2): 295–308.
Dutta, T.K.; Prajapati, P.; Haloi, S. (2016) “Supercritical and subcritical hopf bifurcations in non linear maps", International Journal of Innovative Research in Technology & Science 4(2): 14–20.
Guckenheimer, J.; Holemes, P. (1990) “Nonlinear oscillations dynamical systems and bifurcations of vectors fields”, Ithaca, Fall.
Kuznetsov, Y. A. (2004) Elements of Applied Bifurcation Theory, third edition. Springer-Verlag, New York.
Li, H.; Wang, M. (2013) “Hopf bifurcation analysis in a Lorenz-type systems", Nonlinear Dynamical 71(1): 235–240.
Li, X.; Ou, Q. (2011) “Dynamical properties and simulation of a new Lorenz-like chaotic system", Nonlinear Dynamical 65(3): 255–270.
Liao, X.; Wang, L.; Yu, P. (2007) Stability of Dynamical Systems. London, Canada.
Lorenz, E. (1963) “Deterministic nonperiodic flow", J. Atmos. Sci. 20(2): 130–141.
Pehlivan, I.; Uyaroglu, Y. (2010) “A new chaotic attractor from general Lorenz system family and its electronic experimental implementation", Turk J. Elec. Eng. & Comp. Sci. 18(2): 171–184.
Perko, L. (2000) Differential Equations and Dynamical Systems, third edition. Springer-Verlag, New York.
Pyragas, K. (2006) “Delayed feedback control of chaos", Phil. Trans. R. soc. A. 364(1846): 2309–2334.
Soon Tee, L.; Salleh, Z. (2013) “Dynamical analysis of a modified Lorenz system", Hindawwi Publishing Corporation Journal of Mathematics 2013(1): 1–8.
Sotomayor, J.; Melo, L.; Braga, D. (2006) Stability and Hopf Bifurcation in the Watt Governor Systems. Cornell University Library, orXiv: Matemáticas/0604177
Tian, Y.-P. (2012) Frequency-Domain Analysis and Desing of Distributed Control Systems. Wiley-IEEE Press.
Yan, Z. (2007) “Hopf bifurcation in the Lorenz-type chaotic system", Chaos, Solitons & Fractals 31(5): 1135–1142.
Yu, P.; Lü, J. (2010) “Bifurcation control for a class of Lorenz-like systems", International Journal of Bifurcation and Chaos 21(9): 2647–2664.