Abstract
We show that Hill’s equation with white noise potential has a sequence of Dirichlet eigenvalues λn that behaves almost like in the classical case, in the sense that λn − n2π2 has a logarithmic growth coming from a sequence of Gaussian random variables.
References
Breiman, L. (1992) Probability. Classics in Appl. Math. SIAM.
Eastham, M.S.P. (1971) The Spectral Theory of Periodic Differential Equations. Scottish Academic Press.
Hochstadt, H. (1961) “Asymptotic Estimates for the Sturm-Liouville Spectrum”, Com. Pure Appl., vol. XIV, 749–764.
Itô, K. & Mckean, H. (1974) Diffusion Processes and their Sample Paths. Segunda edición, Springer-Verlag.
Karatzas, I. & Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus.Springer-Verlag. Segunda edición.
Mckean, H. (1969) Stochastic Integrals. Academic Press, New York.
Mckean, H. & Moerbeke, P. (1975) “The Spectrum of Hill’s Equation”, Inv. Math. 30, 217-274.
Levitan, B.M. & Sargsjar, I.S. (1991) Sturm Liouville and Dirac Operators. Kluwer Academic Publishers.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 1995 Henry P. McKean, Santiago Cambronero