Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Valores propios de Dirichlet asociados a la ecuación de Hill con potencial de ruido blanco
PDF (Español (España))

How to Cite

McKean, H. P., & Cambronero, S. (1995). Valores propios de Dirichlet asociados a la ecuación de Hill con potencial de ruido blanco. Revista De Matemática: Teoría Y Aplicaciones, 2(2), 1–7. https://doi.org/10.15517/rmta.v2i2.114

Abstract

We show that Hill’s equation with white noise potential has a sequence of Dirichlet eigenvalues λthat behaves almost like in the classical case, in the sense that λn − n2π2 has a logarithmic growth coming from a sequence of Gaussian random variables.

https://doi.org/10.15517/rmta.v2i2.114
PDF (Español (España))

References

Breiman, L. (1992) Probability. Classics in Appl. Math. SIAM.

Eastham, M.S.P. (1971) The Spectral Theory of Periodic Differential Equations. Scottish Academic Press.

Hochstadt, H. (1961) “Asymptotic Estimates for the Sturm-Liouville Spectrum”, Com. Pure Appl., vol. XIV, 749–764.

Itô, K. & Mckean, H. (1974) Diffusion Processes and their Sample Paths. Segunda edición, Springer-Verlag.

Karatzas, I. & Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus.Springer-Verlag. Segunda edición.

Mckean, H. (1969) Stochastic Integrals. Academic Press, New York.

Mckean, H. & Moerbeke, P. (1975) “The Spectrum of Hill’s Equation”, Inv. Math. 30, 217-274.

Levitan, B.M. & Sargsjar, I.S. (1991) Sturm Liouville and Dirac Operators. Kluwer Academic Publishers.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 1995 Henry P. McKean, Santiago Cambronero

Downloads

Download data is not yet available.