Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Analysis of optimal control problems for the process of wastewater biological treatment
PDF

Keywords

wastewater treatment
nonlinear model
optimal control
tratamiento de aguas residuales
modelo no lineal
control óptimo

How to Cite

Grigorieva, E. V., Bondarenko, N. V., Khailov, E. N., & Korobeinikov, A. (2013). Analysis of optimal control problems for the process of wastewater biological treatment. Revista De Matemática: Teoría Y Aplicaciones, 20(2), 103–118. https://doi.org/10.15517/rmta.v20i2.11430

Abstract

We consider a three-dimensional deterministic control model of the process of aerobic wastewater biotreatment. For this model, we formulate and solve two optimal control problems, each of which has a corresponding minimizing functional. For the first problem, the functional is a weighted sum of the pollutant concentration at the end of a fixed time interval and the cumulative biomass con- centration over the interval. For the second problem, the functional is a weighted sum of the pollutant concentration at the end of the time interval and the cumulative oxygen and biomass concentra- tions over the interval. In order to solve these problems, we apply the Pontryagin Maximum Principle. The switching functions are analytically investigated and uniquely determine the type of the op- timal controls for the considered problems. Their properties allow the simplification of the optimal control problems to that of finite- dimensional constrained minimization. Numerical solutions of the optimal control problems are also provided.

https://doi.org/10.15517/rmta.v20i2.11430
PDF

References

Bondarenko, N.V.; Grigorieva, E.V.; Khailov, E.N. (2010) “Attainable set of three-dimensional nonlinear system describing the wastewater treatment process”, in: Yu.S. Osipov & A.V. Kryazhimskii (Eds.) Problems of Dynamical Control, 5, MAX Press, Moscow: 28–41.

Gomez, J.; de Gracia, M.; Ayesa, E.; Garcia-Heras, J.L. (2007) “Mathematical modelling of autothermal thermophilic aerobic digesters”, Water Research 41(5): 959–968.

Grigorieva, E.; Bondarenko, N.; Khailov, E.; Korobeinikov, A. (2012) “Finite-dimensional methods for optimal control of autothermal thermophilic aerobic digestion”, in: K.Y. Show & X. Guo (Eds.) Industrial Waste, InTech, Croatia: 91–120.

Grigorieva, E.V.; Bondarenko, N.V.; Khailov, E.N.; Korobeinikov, A. (2012) “Three-dimensional nonlinear control model of wastewater biotreatment”, Neural, Parallel, and Scientific Computations 20: 23–36.

Grigorieva, E.V.; Khailov, E.N.; Korobeinikov, A. (2012) “Reduction of the operation cost via optimal control of an industrial wastewater biotreatment process”, in: http://jointmathematicsmeetings.org/amsmtgs/2138 abstracts/1077-g5-1378.pdf.

Krasnov, K.S.; Vorob’ev, N.K.; Godnev, I.N.; et al. (1995) Physical Chemestry 2. Vysshaya Shkola, Moscow.

Lee, E.B.; Marcus, L. (1967) Foundations of Optimal Control Theory. John Wiley & Sons, New York.

Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. (1962) Mathematical Theory of Optimal Processes. John Wiley & Sons, New York.

Rojas J.; Burke, M.; Chapwanya, M.; Doherty, K.; Hewitt, I.; Korobeinikov, A.; Meere, M.; McCarthy, S.; O’Brien, M.; Tuoi, V.T.N.; Winstenley, H.; Zhelev, T. (2010) “Modeling of autothermal thermophilic aerobic digestion”, Mathematics-in-Industry Case Studies 2: 34–63.

Vasil’ev, F.P. (2002) Optimization Methods. Factorial Press, Moscow.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2013 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.