Abstract
One way to create models of elliptical galaxies is to start from a system of particles with a suitable distribution and to follow its evolution with an N-body code until it reaches equilibrium. In previous works we used the code of L.A. Aguilar to generate non-cuspy and cuspy models, the latter giving a better representation of elliptical galaxies. However, the method proposed by Hernquist and Ostriker is more suitable for the cases with central cusps, because it uses an expansion of the potential in radial functions that already reflects the cuspy character. Here we consider two models, one non-cuspy and another cuspy, obtained with the method of Aguilar and whose potentials we now fit with the Hernquist and Ostriker expansion. We obtained the corresponding variational equations and we used them to determine the Lyapunov exponents of orbits already investigated with the method of Aguilar and to separate the chaotic ones. We classified the regular orbits through the analysis of their orbital frequencies. Here we present a comparison of the results obtained with the two methods for both types of orbits.
References
Aguilar, L.A.; Merritt, D. (1990) “The structure and dynamics of galaxies formed by cold dissipationless collapse”, Astrophysical Journal 354: 33–51.
Aquilano, R.O.; Muzzio, J.C.; Navone, H.D.; Zorzi, A.F. (2007) “Orbital structure of self–consistent triaxial stellar systems”, Celestial Mechanics and Dynamical Astronomy 99 (4): 307–324.
Binney, J; Tremaine, S. (1987) Galactic Dynamics. Princeton University Press, Princeton, New Jersey.
Carpintero, D.D.; Wachlin, F.C. (2006) “Sensitivity of the orbital content of a model stellar system to the potential approximation used to describe it”, Celestial Mechanics and Dynamical Astronomy 96(2): 129–136.
Crane, P.; Stiavelli, M.; King, I.R. Deharveng, J.M.; Albrecht, R.; Barbieri, C.; Blades, J.C.; Boksenberg, A.; Disney, M.J.; Jakobsen, P.; Kamperman, T.M.; Machetto, F.; Mackay, C.D.; Paresce, F.; Weigelt, G.; Baxter, D.; Greenfield, P.; Jedrzejewski, R.; Nota, A.; Sparks, W.B. (1993) “High resolution imaging of galaxy cores”, The Astronomical Journal 106 (4): 1371–1393.
Hernquist, L. (1990) “An analytical model for spherical galaxies and bulges”, Astrophysical Journal 356: 359–364.
Hernquist, L.; Ostriker, J.P. (1992) “A self–consistent field method for galactic dynamics”, Astrophysical Journal 386: 375–397.
Huang, S.; Dubinsky, J.; Carlberg, R.G. (1993) “Orbital deflections in N-body systems”, Astrophysical Journal 404: 73–80.
Kalapotharakos, C.; Voglis, N. (2005) “Global dynamics in self–consistent models of elliptical galaxies”, Celestial Mechanics and Dynamical Astrononomy 92 (1–3): 157–188.
Moller, P.; Stiavelli, M.; Zeilinger, W.W. (1995) “Core properties of elliptical galaxies- I. A northern hemisphere sample at high resolution”, Mon. Not. Royal Astron. Soc. 276: 979–1002.
Muzzio, J.C. (2006) “Regular and chaotic orbits in a self-consistent triaxial stellar system with slow figure rotation”, Celestial Mechanics and Dynamical Astronomy 96(2): 85–97.
Muzzio, J.C.; Carpintero, D.D.; Wachlin, F.C. (2005) “Spatial structure of regular and chaotic orbits in a self-consistent triaxial stellar system”, Celestial Mechanics and Dynamical Astronomy 91 (1–2): 173–190.
Muzzio, J.C.; Navone, H.D.; Zorzi, A.F. (2009) “Orbital structure of self-consistent cuspy triaxial stellar systems”, Celestial Mechanics and Dynamical Astronomy 105(4): 379–395.
Napolitano, N.R.; Capaccioli, M.; Romanowsky, A.J.; Douglas, N.G.; Merrifield, M.R.; Kuijken, K.; Arnaboldi, M.; Gerhard, O.; Freeman, K.C. (2005) “Mass-to-light ratio gradients in early-type galaxy haloes”, Mon. Not. Royal Astron. Soc. 357: 691–706.
S̆idlichovský, M.; Nesvorný, D. (1997) “Frequency modified Fourier transform and its application to asteroids”, Celestial Mechanics and Dynamical Astronomy 65: 137–148.
Udry, S.; Pfenniger, D. (1988) “Stochasticity in elliptical galaxies”, Astronomy and Astrophysics 198 (1–2): 135–149.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2013 Revista de Matemática: Teoría y Aplicaciones