Abstract
We consider the Hill equation whose potential is the formal derivative of a Hölder – continuous function of parameter θ ∈ (0,1), and show that solutions of the discrete version converge to solutions of the original equation in a suitable way. This fact is used to establish existence and uniqueness theorems for this singular case, and to deduce some properties of solutions and the discriminant of the studied equation.
References
Cambronero, S. & McKean, H.P. (1995) “Valores propios de Dirichlet asociados a la ecuación de Hill con potencial de ruido blanco”, Revista de Matemática: Teoría y Aplicaciones 2(2): 1–7.
Cambronero, S. (1996) The Distribution of the Ground State of Hill’s Equation with Random Potential. Tesis de Doctorado. Courant Institute of Mathematical Sciences, New York University.
Eastham, M.S.P. (1973) The Spectral Theory of Periodic Differential Equations. Scottish Academic Press.
Frish, H.L. & Lloyd, S.P. (1960) “Electron levels in a one–dimensional random lattice”, Phys. Review., 120, No. 4: 1175–1189.
Fukushima, M. & Nakao, S. (1977) “On spectra of the Schrödinger operator with a white noise potential”, Z. Wahrsch. Verb. Geb., 37: 267–274.
Halperin, B.I. (1965) “Green’s functions for a particle in a one-dimensional potential”, Phys. Review., 139, No. 1A: 104–117.
Hochstadt, H. (1961) “Asymptotic estimates for the Sturm – Liouville spectrum”, Com. Pure Appl., 14: 749–764.
Hochstadt, H. (1963) “Function–theoretic properties of the discriminant of Hill’s equation”, Math. Zeit., 82: 237–242.
Kelley, W.G. & Peterson, S.C. (1991) Difference Equations. Academic Press, Boston.
Levitan, B.M. & Sargsjar, I.S. (1991) Sturm Liouville and Dirac Operators. Kluwer Academic Publishers.
Lifshits, I.M.; Gradeskul, S.A. & Pastur, L.A. (1988) Introduction to the Theory of Disordered Systems. John Wiley & Sons, New York.
Magnus, W. & S. Winkler, S. (1966) Hill’s Equation. Interscience.