Abstract
In this article we give some geometrical interpretations of the Schubert-varieties of the Grassmannians G(2,4), G(3,5) and G(2,5), and some of their applications to enumerative geometry.
References
Chiavacci, R. “Qualche osservazione sui problemi totalmente reali”, Pubblicazione dell’Instituto di Matematica della Università di Ferrara, Preprint 81.
Chiavacci, R.; Escamilla, J. “Schubert calculus and enumerative problems”, Pubblicazione dell’Instituto di Matematica della Università diFerrara, Preprint 91.
Chiavacci, R.; Escamilla, J. (1988) “Schubert calculusand enumerative problems”, Bolletino U.M.I.72-A: 119–126.
Dieudonné, J. Abrégé D’Histoire des Mathématiques. s.l.i., s.p.i., s.f.
Fulton, W. (1984) Intersection Theory. Springer-Verlag, Berlin.
Griffith-Harris (1978) Introduction to Algebraic Geometry. John Wiley & Sons, NewYork.
Kleiman, S.L. et al. (1979) Schubert Calculus. Massachusetts Institut of Technology-American Mathematical Monthly, No. 79-I
Kleiman, S.L. (1976) “Problem 15 and Rigurous Foundation of Schubert Enumerative Calculus”, Proceedings of Symposia in Pure Mathematics 28.
Newman, J.R. (1976) El Mundo de las Matemáticas. Vol.1. Edit. Grijalbo, México.