Abstract
A family of functions, which share many properties with the classical partition function p(n), is studied. It is explained why these functions may be called “partition functions” and, in particular, some recursive formulas are developed for calculating them.References
[ARS] Auslander, M.; Reiten, I.; Smalo, S. (1995) Representation Theory of Artin Algebras. Cambridge Univ. Press, Cambridge.
[BCS] Bautista, R.; Colavita, L.; Salmerón, L. (1981) “On Adjoint Funtors in Representation Theory”, in Representations of Algebras, Lecture Notes in Mathematics 903, Springer-Verlag: 9–25.
[BK] Bautista, R.; Kleiner, M. (1990) “Almost split sequences for relatively projective modules”, J. Algebra 135: 19-56.
[Bo] Boza, J. (1996) Algoritmos de Reducción en la Teoría de Representaciones de Coálgebras. Tesis doctoral, UNAM, México.
[BZ] Bautista, R.; Zuazúa, R. (1996) “Morita equivalence and reduction algorithms for representations of coalgebras”, Canadian Math. Soc., Conference Proc.18: 51–80.
[CB1] Crawley-Boevey, W.W. (1988) “On tame algebras and bocses”, Proc. London Math. Soc. 56(3): 451–483.
[CB1] Crawley-Boevey, W.W. (1992) “Modules of finite length over their endomorphism rings”, in Representations of Algebras and Related Topics, Cambridge Univ. Press, No. 168: 127–184.
[CB3] Crawley-Boevey, W.W. “Matrix reductions for Artinian rings, and an applicationto rings of finite representation type’, Journal of Algebra 157(1): 1–25.
[D1] Drozd, Y.A. (1980) “Tame and wild matrix problems”, in Representation Theory II, Lecture Notes in Mathematics 832, Springer-Verlag: 242–258.
[D2] Drozd, Y.A. (1986) “Tame and wild matrix problems”, Amer. Math. Soc. Transl. 128(2): 31–55.
[D3] Drozd, Y.A. (1992) “Matrix problems, small reduction and representations of a class of mixed Lie groups”, in Representations of Algebras and Related Topics, Cambridge Univ. Press, No. 168: 225–249.
[K] Kleiner, M. (1984) “Matrix problems and representations of finite dimensional algebras”, Proceed. IV-ICRA, Carleton Univ., Ottawa.
[MacL] MacLane, S. (1988) “Categories for the Working Mathematician”. Springer-Verlag.
[M] Montaño, G. (1993) “Caracterización de bocses de dimensión finita de tipo manso”. Tesis de Maestría, UNAM, México.
[O] Ovsienko, S.A. (1993) “Generic representations of freebocses”, Preprint 93-03, Universität Bielefeld, 28 p.
[Ri] Ringel, C.M. (1984) Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, 1099, Springer-Verlag.
[Ro] Roiter, A.V. (1980) “Matrix problems and representations of bocs’s”, in Lecture Notes in Mathematics 831, Springer-Verlag: 288–324.
[RK] Roiter, A.V.; Kleiner, M. “Representations of differential graded categories”, in Lecture Notes in Mathematics 488, Springer-Verlag: 316–339.
[S] Simson, D. (1992) “Linear representations of partially ordered sets and vector space categories”, Gordon and Breach, Switzerland.