Abstract
By means of a relaxation approach, we study the shape design of a stiff inclusion with given area in a membrane in order to maximize its fundamental frequency. As an eigenvalue control problem, the fundamental frequency is a concave function of the control, which is not described by the membrane shape, but by an element in a function space. First order optimality conditions allow to describe the optimal shape by means of a free boundary value problem.References
Bourbaki, N. (1973) Espaces Vectoriels Topologiques. Hermann, Paris.
Buttazzo, G.; Dal Maso, G. (1993) “An Existence Result for a Class of Shape Optimization Problems”, Arch. Rat. Mech. Anal. 122: 183–195.
Castaing, Ch.; Valadier, M. (1977) Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-New York.
Céa, J.; Malanowski, K. (1970) “An example of a max-min problem in partial differential equations”, SIAM J. on Control and Optimization 8: 305–316.
Courant, R.; Hilbert, D. (1953) Methods of Mathematical Physics, vol I. Wiley-Interscience, New York,
Cox, S.; McLaughlin, J. (1990) “Extremal eigenvalue problems for composite membranes”, Appl. Math. and Optim. 22: 169–187.
Delfour, M. (1992) “Shape derivatives and differentiability of min-max”, in: M. Delfour & G. Sabidussi (Eds.) Proceedings NATO-Université de Montréal Seminar on Shape Optimization and Free Boundaries, Kluwer, Dordrecht.
Egnell, H. (1987) “Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems”, Annali Sc. Norm. Sup. di Pisa 14: 1–48.
Eppler, K. (2011) “On the shape gradient computation for elliptic eigen-value problems”, Research Report (August 2011) DFG SPP1253-120, Universität Erlangen-Nürnberg.
Ekeland, I.; Temam, R. (1974) Analyse Convexe et Problemes Variationnelles. Dunod, Paris.
Gonzalez de Paz, R.B. (1982) “Sur un problème d’optimisation de domaine”, Numer. Funct. Anal. and Optimiz. 5: 173–197.
Gonzalez de Paz, R.B. (1994) “A relaxation approach applied to domain optimization”, SIAM J. on Control and Optimization 32: 154–169.
Gonzalez de Paz, R.B.; Tiihonen, T. (1994) “On a relaxation based numerical method por domain optimization”, in: M. Krizek, P. Neittaanmaki & R. Sternberg (Eds.) Finite Element Methods, Marcel Dekker, New York.
Harrel, E.M.; Kröger, P.; Kurata, K. 2001) “On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue”, SIAM J. Math. Anal. 33(1): 240–259.
Henrot, A. (2006) Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel-Boston-Berlin.
Jensen, R. (1980) “Boundary regularity for variational inequalities”, Indiana Univ. Math. Journal 29: 495–511.
Jouron, Cl. (1978) “Sur un problème d’optimisation ou la contrainte portée sur la fréquence fondamentale”, RAIR0-Analyse Numérique 12: 349–374.
Kawohl, B. (1986) “Geometrical properties of level sets of solutions to elliptic problems”, Proc. Symp. AMS in Pure Mathematics 45: 25–36.
Kinderlehrer, D.; Stampacchia, G. (1980) An Introduction to Variational Inequalities and their Applications. Academic Press, New York.
Miranda, C. (1970) Partial Differential Equations of Elliptic Type. Springer Verlag, Berlin-New York.
Necas, J. (1967) Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris.
Payne, L.; Weinberger, H. (1961) “Some isoperimetric inequalities for membrane frequencies and torsional rigidity”, J. on Math. Anal. and Appl. 2: 210–216.
Rousselet, B. (1979) “Optimal design and eigenvalue problems”, Proc. 8th, IFIP Conference on Optimization Techniques, Lect. Notes in Control and Informaction Sciences, Vol 6, Springer-Verlag, Berlin: 342–352.
Simon, J. (1980) “Differentiation with respect to the domain in boundary value problems”, Numer. Funct. Anal. and Optimiz. 2: 649–687.
Sokolowski, J.; Zolesio, J.P. (1992) Introduction to Shape Optimization, Shape Sensitivity Analysis. Springer Verlag, New York-Berlin.
Tahraoui, R. (1988) “Quelques remarques sur le contrôle des valeurs propres”, in: H. Brézis & J.L. Lions (Eds.) Nonlinear Partial Differential
Equations and Their Applications, Collège de France Seminar, vol. VIII, Longman, Essex: 176–213.
Valadier, M. (1970) Quelques Contributions à l’Analyse Convexe. Thèse Doctorale, Université de Paris.
Valadier, M. (1963) Extension d’un algoritnme de Frank et Wolfe, Rev. Franc. de Rech. Operationelle 36: 251–253.
Zolesio, J.P. (1981) “Domain variational formulation for free boundary problems”, in: J. Céa & E. Haug (Eds.) Optimization of Distributed Parameter Systems, vol. II, Sijthoff and Noordhoff, Alphen aan den Rijn: 1152–1194.
Zolesio, J.P. (1981) “Semiderivatives of repeated eigenvalues”, in: J. Céa & E. Haug (Eds.) Optimization of Distributed Parameter Systems, vol. II, Sijthoff and Noordhoff, Alphen aan den Rijn: 1457–1473.